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ABSTRACT

Digital (numerical) filtering techniques have become significant

methods for data processing. This report presents the necessary back-

ground theory for a large class of digital filters. Particular filters

discussed are those for smoothing, smoothing and first derivative,

smoothing and second derivative, and smoothing and integration. Error

//

bounds are given for the first three types. ___
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Under Contract No. NAS8-5164 with NASA, Auburn Research Foundation

undertook a program to studynumerical smoothing and differentiation

methods and numerical aspects of finite difference methods. The work

was performed by the Mathematics Department, Auburn University. The

Senior Investigators were Dr. Nathaniel Macon, 1 October 1962 to 1 June

1963, and Dr. L. P. Burton, 1 June 1963 to 31 July 1964. Investigators

were Edward B. Anders, 1 October 1962 to 1 June 1963, Paul W. Spikes,

1 October 1962 to 1 September 1963, Alfred D. Lasaine, 1 October 1962

to 1 June 1964, James T. Taylo, 1 June 1963 to 20 July 1964, and James

J. Johnson, 1 September 1963 to 1 June 1964.

The main effort was devoted to linear digital (numerical) filters

for performing the smoothing, differentiation, and integration of

discrete data and to error analysis for thesa filters. The primary

interest was filtering techniques for one variable, but an extension

to n variables was developed by Anders [14].

This report incorporates the necessary background theory starting

with the classical Fourier theory and going into generalized functions,

pertinent results obtained by other workers, and the results and con-

clusions obtained under this contract. Numerous references to other

publications are given.

A reader interested only in the application of the techniques

discussed here may start reading with Chapter IV.

With Ronald J. Graham and David G.

as NASA Technical Representatives.
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A.D.L.
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NOMENCLATURE

t:

f:

_Ct):

fCt):

h(t):

HCf):

yn(t) :

bnCt) :

Bncf):

yC-l)(t) :

f :
s

_t:

f :
C

n

1_, Yk' etc.:

lO':

time

frequency

Dirac delta function

a function f of t

weight function of a smoothing filter

transfer function of a smoothing filter

th
n

th
n

th
n

th
n

derivative weight function, n _ i.

derivative transfer function, n _ i.

derivative band-pass weight function, n _ O.

derivative band-pass transfer function, n _ O.

integrator weight function

integrator transfer function

sampling rate

1

f
S

highest frequency present in signal

cut-off frequency

termination frequency

roll-off length

kth filter weights

angular frequency (w=2_f)

f w

r: frequency ratio_-= w
S S

f
r : cut-off ratio _£c
C

f
S

rT: termination ratio _--
S
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rd:

N:

Si(x) :

_, A, $ :

A_
roll-off length ratio _-f

s

number of weights on each side of the center

weight h •
o

approximately equal to

sine integral

constraint terms or factors

x



CHAPTER I

CLASSICAL FOURIER _/_ALYSIS

In this chapter we shall list, without proof, s_ne of the

results from Classical Fourier Analysis. Proofs of these results are

readily available in many good texts on the subject [i], [2].

Fourier inte$Tal theorems

Given a function f(x) of a real variable x, if f(x) is absolutely

integ_able, i.e., if

oo

%'# _i

then the integral

exists and

oO

F(y)=_. f(x)e"2_ixy_
oo

(L2)

O0
q%

f(x)=__:(y)__. (i.3)

The condition (i.i) is sufficient but not necessary for (1.2)

and (i. 3)- We assume that all functions with which we shall be

concerned in this chapter satisfy conditions necessary for the

existence of (1.2) and (1.3).

The usual notation

f(x) C ; F(y)

will be used to indicate that the functions of f(x) and F(y) are related

by (1.2) and (1.3). We call ' _FtYJ the Fourier transform of f(x), and

f(x) the inverse Fourier transform of F(y). This being the only type
,

of transform we shall use, it is occasionally convenient to drop the

word "Fourier" and speak of the "transform of f(x)" and of the "inverse

transform of F(y)."



F(y) is in general complex:
F(y) = R(y) + il(y) (l.4a)

or
°

F(y) = A(y)e ie(y) (l.4b)

A(y) is called the Fourier spectrum of f(x), A2(y) is its enersz

spectrum, and e(y) its phase angle.

The function f(x) may in general be complex:

and

r(x)- fR(x)÷ iri(x)

oO

F(y) =,_s) f'_(x)n+ ifl(x)][c°s 2_xy - i sin 2_xy]dx

Oo

=F[fR(x) cos 2_xy + fl(x) sin 2_xy]dx

O0

-iF[fR(x) sin 2_xy - fi(x) cos 2_xy]dx. (1.5)

Hence
oo

R(y) = F[fR(x) cos 2_XY + fl(x) sin 2_xy]dx
-- (SO

(1.6)

and

oOl(y) = - [fR(x) sin 2_Xy - fi(x) cos 2_xy]dx.
-00

(i.7)

Using (l.4a) we find, in a similar manner, that

oo

fR(x) = F[R(y) cos 2_xy - I(y) sin 2_xy]dy.
-(X)

and
oo

fi(x) - f [R(y) sin 2_xy + I(y) cos 2_xyldy.
-00

(1.8)

(1.9)

2



Suppose that f(x) is a real function of x. Then

oo

R(y)=/_(x). cos2_xydx

and
(I)

I(y)=/f(x) sin2_xy_.
-(SO

It is easily seen that

(i.io)

R(-y) = R(y)

and

I(-y) = -T(y),

i.e., R(y) is even and l(y) is odd.

Hence

F(-y) = F*(y)

where the asterisk indicates the complex conjugate.

Conversely, if (1.12) holds, then

oo

fl (x) =.F [R(y) sin 2xxy + l(y) cos 2xxy]dy

_-oo

=0

because the integral is odd, and therefore f(x) is real.

Suppose that f(x) is an imaginary function of x. Then

oo

R(y) = / f(x) sin 2xxydx

and oo

I(y)=/f(x) cos2_xydx.

Hence R(y) is odd and l(y) is even, and

F(-y)= -F*(y).

Conversely, if (I.I_) holds, then f(x) is imaginary.

(i.ii)

(i._)

(i.i3)

(i.I_)



Even and odd i_/nctions

If F(y) is even, then

And if F(y) is odd, then

f(x) = 2i<F(Y) sin 2._xydy.

(i.i5)

(i.16)

Similar expressions are found for F(y), f(x) being even or odd.

We will now list some of the more important theorems of classi-

cal Fourier analysis.

I. Linearity

If F(y) and G(y) are the transforms of f(x) and g(x)

respectively, and if a,b are arbitrary constants, then

a F(y) + b O(_) < ; a f(x) + b g(x). (1.17)

II.

III.

Symmetry

If F(y) is the transform of f(x), then

F(x) C_ > f(-y). (i.18)

If a is a non-zero real constant and F(y) is the transform

I

of f(x), then f(ax) < - _ F (_). (1.19)

IV. "x" domain shifting

V.

If xo is a real constant and F(y) is the transform of

f(x), then

f(x-xo) < > F(y) e"2_ix°y (1.20)

"y-- domain shifting

If Yo is a real constant and F(]r) is the transform of

f(x), then

2_ ixy o
e f(x) <------->F(y-y o) (1.21)



VI.

VII.

VIII.

IXo

Note: Using (1.19) and (i.21) we have

e2_ixy° f(ax) < _ _ P_a y ) (1.22)

"x" domain differentiation

If the transform of dnf(x) exists and if F(y) is the

dxn

transform of f(x), then

dnf(x) < > ( n2_iy) F(y) (1.23)

dxn

"y" domain differentiation

If the inverse transform of dnF(y) exists and if F(y)
n

is the transform of f(x), then_

(-_ix)nf(x) < ; dnF(y) (1.2_)
n

Conjugate functions

If F(y) is the transform of f(x) and the asterisk

indicates the conjugate, then

_(x) < ; F*(-y). (1.25)

"x" domain convolution

If F(y) is the transform of f(x) and G(y) is the transform

of g(x), then

O0

f(x)*g(x) = ff(z)g(x-z)dz < > F(y)G(y) (1.26)

We note here that the existence of the transforms of f(x)

and g(x) is not sufficient to prove this theorem. The proof

usually goes as follows:

Let

H(y) =re -2_ixy (z)g(x-z)dz dab



No

Xl.

Assuming that the order of integration can be changed, we

have

P_t '1,

Using (i.20) we have

H(y) = fcof(z)e'2_iYzG(y)dz

= F(y)G(y).

A sufficient condition which would allow the inter-

change in the order of integration is that f(x) and g(x)

be square-integrable, i.e.

OO

and

< oo

oo

_g(x) 12dx < co. (i.27)

Similarly, we have the following theorem which can

be proved from (i. 26) by using (i.18).

"y" domain convolution

If F(y) is the transform of f(x) and G(y)

transform of g(x), then

f(x)g(x) _------_/F(z)G(y-z)dz = F(y)*G(y).
-CO

Parseval' s formula

If F(y) and G(y)

respectively, then

oO cO

ff(x)g(x)dx=Jco'(-y)G(y)dY.oo

is the

(l.zs)

are the transforms of f(x) and g(x)

6



C}LAPTER II

G_,tERALIZED FL_CTIONS _2_D THEIR FOURIER TPdtNSFORMB

2.1 Generalized functions

The Dirac delta functions (t) is often "defined" by one of the

following statements:

(A) If f(t) is a continuous function at t=to, then8 (t) has

the property that

f(t) _(t-to)dt -- f(to) ; (2.1)
oo

(B) _(t) = o if t+o, and

oo

(t)dt- I;
m

(2.2)

(c) S(t) = lira fn(t) where {fn(t)} is a sequence of
n-_eo

functions satisf_ying the conditions:

Go

fn(t)dt = i and lira fn(t) = o, t_o.
oo n--_

(2.3)

Thesedefinitions are meaningless if we atten_t to think of _ (t)

as a function in the ordinary sense. By introducing the delta function

as a new concept, a generalized function, the difficulties &re

resolved. Then (.2.1) can be given precise meaning, but (2.2) and

(2.3) do not uniquely describe 8(t). Such an approach to the pro-

blem is usually relegated to an appendix of a book, and is usually

very sketchy.

We are concerned he_ with extending the Fourier integral theory.

A relatively easy and short approach, which is similar to the extension

of the rational numbers to the real numbers, is given by Lighthill [3].

7



Alternately, we could delve into functional analysis to extend the

theory. For this study it appears that the first approach will be

more meaningful, and so we have chosen to develop it. However we

shall restrict ourselves to that portion of the development which

suits our purpose here, and for a detailed development the reader

is referred to Lighthill.

Advantages in clarity are gained by using some of the term-

inology and notation of functional analysis.

Let R be a set of scalars (the real or complex numbers) and let

K be a set with an operation denoted by (+) and called "addition"

defined on it.

Definition 1. K is called a linear space over R if

l) K i_ an abelian group with respect to (+)

2) ak _ K for all a ¢ R and all k c K, and

(a) a(bk) = (ab)k for all a,b ¢ R,

(b)1 • k = k

B) If a,b ¢ R and kl, k2 ¢ K, then

(a) a(kl+k2)

(b) (a+b)k I = akl+bk I.

Let

X = _x I x is a real number_

and

il= 61 h is a function of x, x a real number) .

Under ordinary addition and scalar multiplication, H is a linear

space over X.

We denote the Fourier transfoz_m of f(x) by Z(f),

GO

Z(f) = g(y) =.Ff(x)c-2_iXYdx.
_-OO

We denote the inverse transform by z-l(g) = f. Then Z is a mapping

of a subset Zx of H into H, and Z"l is a mapping of a subset Z"lx

8
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-1

of H into H. However Zx $ _Z, that is, the domains_f definition of Z

and Z"I in H are not identical. In addition, there exist convergent

sequences of functions of Zx, each element of which has a transform,

but whose limit has no transform.

-1
Z and Z
x x are linear spaces. This suggests the possibility of

constructing a linear space in which these may be imbedded and such

that the mappings Z and Z"l can be suitably extended to remove the

above difficulties.

Let S denote the set of all functions f(x) which are everywhere

differentiable any number of times and such that f(x) and all of

its derivatives are O(ixl -N) as Ixl --_ oo for all integers N. As

a reminder, the 0 notation, f(x) = O(g(x)) as x --_ a, means that

there exists a positive constant A such that

Ir(x) l < AIgCx)l
as x --_ a.

2

Example: e-x is contained in S.

It is clear that S, under ordinary addition and scalar multi-

plication of functions, is a linear space. S is called a test or

fundamental space and elements of S are called test functions.

If g(x) is a function such that g(x)f(x) c S for all f(x) ¢ S, then

g(x) is called a multiplier on S.

Let M denote the set of all functions m(x) which are everywhere

differentiable any number of times and such that re(x) and all of its
N

derivatives are O( Ixl o) as Ixl --_ oo for some integer N •
o

Le_ma: If re(x) ¢ M and f(x) c S, then m(x)f(x) c S.

_oor: dp _x)rCx)- )(x).

j=O

It suffices to sh_ each term on the right in the above equation

is in S. There exist numbers AI _ O, KI _ 0 and an integer NI

such that

Im(j)(x)l <_AllxlH' forallx suchthatixl >KI.

9



If N2 is any integer, then there exist numbersA2 > 0, K2 > 0 such
that

t "_ x I"N2If_P'JJ(x) l _<A21 for all x such that Ixl > K2.

Then for all x such that Ixl > max [KI,K 2],

Im(J)(x)f(P-J)(x) I < AIA 2 Ixl •

But N = NI-N 2 is arbitrary s_nce N2 is arbitrary. Hence m(j)(x)

.%

f(P'J;(x) ¢ S. This shows that the elements of M are multipliers on

S. Obviously if re(x) ¢ M, then m'(x) and m'(x)f(x) ¢ S.

Example: Any polyn_nial is contained in M.

Theorem i. If f(x) c S, then

(a) f'(x)_s

(b) Z(f) = g(y) ¢ S

(c) z-1(f)= h(y)_ S

(_) f(-x)_ S

(e) _(x) _ S

(f) f(ax+b) c S, a,b constants and a _ O.

Proof: The first part is obvious.

O0

g(Y) =roof(x).

and differentiate p times.

Thus

To prove (b), let

e-2_ _u,_/'_:

Then integrate by parts N times.

(P)(y)

O0

lO

< (2.)P-N,.,. ]=1°"
- .



Therefore

g(P)(y) = 0(lyl-N).

Part (c) is proved in a similar manner. For part (d), from (b)

we have g(y) = Z(f) is a test function. Applying Z-I we have

oO

f(x) = _g(y)e2_ixYdy.
-CO

Hence
CO

f(-x)=/ g(y)e'2_iXYdy,

_-OO

i.e., f(-x) = Z(g), hence f(-x) ¢ S.

Part (e) follows by virtue of the fact that If(m)(x)l = _f*(m)(x) I.

For part (d), let f(x) _ g(y) and use (1.19) and (1.20) to write

2_iby
a

e g(_). (2.5)f(ax+b) < >

Then it suffices to show that the right side of (2.5) is a test

function. Clearly it is everywhere differentiable amy number of

times. Since

lea g(_)I_<I-K--I,

it _sob_ouslyO(lYi"N)as lYl "_ oofor all integersN.
f(_+b) ¢ S.

Hence

Definition 2.

re_ if

A sequence {fnCx)} of test functions is called

cO

cof fn(X)F(x)_< _ for an F(x)_ S.

An example of such sequence is e

f L_,2.u)

Definition 3. Let C denote the class of all regular sequences.

Then _J_fn(X)) e C is said to be e_uivalent to L_Tgn(X)_ e C if

ii



co oo

fco%(x)F(x)dx = _oofcogn(x)F(x)dx for all F(x)¢ S. (2.7)

v " *_-* *_-'- equivalence relation. Hence!+ _s easy to see _,_ _ is _

C is partitioned into disjoint subclasses, and we let S denote the

set of all subclasses of C determined by this equivalence relation.

Definition 4. An element of S is called a _eneralized function.

Hence a generalized function is the class of all regular sequences

equivalent to a given regular sequence. Since the limit (2.6) is

the same for all sequences of a given element s of S, any sequence

of s can serve as a representative of that class.

Definition 5- If s(x) c S and F(x) ¢ S we define

co co

f_(x)F(x)dx- _cofcoSn(X)F(x)dx_ - (2.8)

where _Sn(X) _ is any representative of s(x).

In general, the left side of (2.8) has no meaning as an integral

in the ordinary sense. It is just a conventional notation we adopt

to denote the limit on the right side of (2.8).

Ix41
n

The sequence[e Jrepresents a generalized function l(x)Example:

such that

Z(x)F(x)ax= F x)ax.
wOO -OO

(2.9)

Definition 6. Let f(x) and h(x) be generalized functions with repre-

sentative sequences_ -_fn(X)} and --{hn(X)_ respectively. Also let

re(x) ¢ M. Then

(a) the sum f(x) + h(x) isdefined as the generalized function

b(x) with a representative {fn(X) + hn(X) }

(b) the derivative f'(x) is defined as the generalized function

with a representative _f'(x)_
L n j

12



o

(c) f(ax+b) is defined as the generalized function with a

representative {fn(aX+b)} ;

(d) The product m(x)f(x) is defined as the generalized function

with a representative {m(x)%(x)} ;

(e) The Fourier transform g(y) of f(x) is defined as the

generalized function with a representative _gn(y)l ,

where gn(y) is the Fourier transform of %(x).

To show that these definitions are consistent we must show that

(a)

(b)
and

(c)

Part(a)

Parts (b)

each sequence named is a sequence of test functions,

each sequence named is regular,

equivalent regular sequences defining f(x)_ and h(x)

lead to equivalent regular sequences defining the new

generalized functions.

follows in each case from previous remarks and Theorem 1.

and (c) can be deduced in each case from the following

equations:

l)

O0 oo

l_e° -_oo[fn(x)+hn(X)]F(x)dx = i_o Jeofn(X)F(x)dx

oo

+_ _oohn (x)F(x)dx,
(2.1o)

(30 O0

(2.11)

3)
gO OO

i_/fn(s_x+b)F(x)dx _I inlS_o/ fn(x)F(_)dx

-00 -00

(2.:t2)

(30

F [m(x)f (x)]F(x)dx =
4) n

nl_ / °_n(X) [m(x)F(x) ]dx

-00

(2.13)

15



and, from Parseval' s formula,

OO OO

"-00 ..... _ _-00 _

where G(y) is the Fourier transform of F(x).

It follows from the equations (2.10)--(2.14) and definition 5

that

oo oO

f' - f(x)F'_fco ( (2.15)

oo oo

" --OO

(2.16)

and

OO OO

_j_com(x) f(x) ]F(x) dx = fcof(x) [m(x)F(x) ] dx,_

OO oo

(2.17)

(2.18)

If a is a scalar, then the function h(x) = a is contained

in M and hence if f(x) e S, af(x) ¢ S. With the addition as defined

above in S, we have S is a linear space.

Let I denote the set of all ordinary functions h(x) such

that (l+x2)-Nh(x) is absolutely integrable on (-oo, oo) for some

integer N.

Theorem 2. I is a linear space and can be imbedded in S, i.e., I C S.

The theorem asserts that if h(x) ¢ I then there exists a regular

sequence ___hn(X)_ such that

OO OO

l_2co_--cohn(X)F(x)dx =-_oo L(x)F(x)dx' for all F(x) ¢ S.
(2.19)

For a proof of this theorem we refer the reader to [3], PP. 22-23.

14



o

Having shown the existence of such a sequence, the mapping

h-_ C {hn} ,

where C{hn_enotes the class of all sequences equivalent to

{hn} , imbeds I in S.

Note that the integral on the right side of (2.19) is

cO O0

Since (l+x2)-_(x) is absolutely integrabl_ and (l+x2)NF(x)

test function, this integral exists in the ordinary sense.

is a

Definition 7" If h(x) _ I, then the image of h(x) in S is called

the _eneralized function defined by h(x) and is denoted by the

same symbol.

Thus each ordinary function h(x) _ I defines a generalized

function and the integral (2.19) has meaning in the ordinary sense

and in the generalized theory, and in this case these meanings are

the same.

Using (1.18), (1.23) and (2.5), with definition 6 we deduce:

TheoremS.

and

If f(x) c S and Z(f)= g(y), then

(a) Z[ f(ax+b) ]

a

= g(Y),a +o,

(b) Z[f'(x)] : 2_iyg(y),

(c) Z[g(-x)] = f(y).

The following two theorems eliminate the possibility of con-

fusion in the notations f(x) and f'(x), where f(x) and f'(x) are

contained in I.

Theorem4. If f(x) and f'(x)exist as ordinary functions contained

in the set I, then the derivative of the generalized function defined

15



by f(x) is the generalized function defined by f' (x).

Proof: In the generalized theory, with f(x) and f'(x) interpreted

as generalized functions, we have shownthat

OO OO

-OO • -OO

for all test functions F(x).

Considering f(x) and f'(x) as ordinary functions the integrals

oo

'(x)FCx)_,

each exist.

and
oo

_cof(x)F'(x)_

Integrating the first integral by parts we have

co b co

_f'(x)F(x)dx = l_co f(x)F(x) I _ff(x)F'(x)dx.
-CO -a --co

b-_co

Hence

f(x)F(x)ix!_.co

and

fCx)FCx)

must be finite.

limits are zero.

f'(x).

O0

But the existence of/ f(x)F(x)dx implies that both
-CO

Hence (2.20) holds for ordinary functions f(x) and

Theorem _. If f(x) is an ordinary function which is absolutely

integral on (-co, co)--so that its Fourier transform g(y) exists

16



by the classical Fourier integral theorem--then the Fourier transform

of the generalized function f(x) is the generalized function g(y).

Proof: We have

-1 ,F c° IF°°l÷y2] g(y)i_y= ill+y2]" f(x)e'2_i_
- v -(X) _-OO

CO OO

2-1

<_ [j_l+y ] dy] __f(x) Idx

<OO,

Hence g(y) satisfies definition 7, and the generalized function

g(y) exists. Nuw both the ordinary function g(y) and the generalized

function g(y) satisfy

O0 O0

. = fCx)FC-x)e

for any test function F(x), where Z[F] = G(y). Therefore,the

Fourier transform of the generalized function f(x) is the one

defined by g(y).

2.2 The Dirac delta function

i. The sequence )2e'nX represents the important Dirae

delta function S(x) which has the property that for any test

function F(x),

j2 :

To show this, we note that

(a)

ooi

F( - 2n)2e'nX dx = i; n = i, 2, .

(2.21)

17



1

(b) C le-_ _ " (_) •

If F(x)c S, using (a) we write

co 1

I I = I._co"n_t_;e-nX2[F(x)-F(O) ]dx I

oo 1 2

= If (n)2e-nX [F(x)-F(O)]
Ixdx

oo 1

-CO

- 1
(_n)g

--->0 as n---> oo

where in the last line we used the Mean Value theorem for derivatives,

i.e., on any interval [O,x] there exists an a, 0 < a < x, such that

F'Ca) = F(x)-F(O) and thus max IF'(x)l> IF'(a)lon_ interval
X

[O,x]; and (b).

2. The Fourier transform of _(x) is i. To see this we note that

and hence the sequence [e n Sis a representative of the Fourier

transform of $(x). But for any test function G(y)

22
co-_y oo

in__ co/ e n G(y)dy =/l.G(y)dy,
-00 -CO

hence

$(x) < _ 1.

18



3. The Fourier transform of

easily from part (a) of theorem 3-

4. $(x-xo) <
we have

-2_iXoY

$(x-x o) is e . This follows

-2_ ixoY
> e and part (c) of theorem 3,

2_ixy o
e _ _ (y'yo) .

For Yo = O, we have

i < > 8(y).

i [e2_iXYo+e5- Writing cos2_xy ° = _ -2_ixY°1

above relation gives

and applying the

1
cos2_xy ° _ _ [ $(Y-Yo ) + 8(Y+Yo) 1-

2_ixy ° -2_ixy o
i [e . e ] and using the

Writing sin2_xy ° = 2--{

same relationship, we find that

sin2_xy ° <
1

> _ [ S(Y-Yo ) - _(Y+Yo )1"

Definition 8. Let g(x) be an ordinary function such that,

test function F(x) which is zero outside of (a,b), g(x)F(x)

grable on (a,b), a <_ b. If f(x) is a generalized function such

that

then we define

CO CO

__co'(x)F(x)dx =/g(x)F(x)dx_co

f(x)= g(x),

for any

is inte-

(2.22)

for a < x < b.

In the sense of this definition we have 8 (x) = 0 for 0 < x < eo

and -oo < x < O. Suppose F(x) = 0 when 0 < x < co and when -co < x < O,

19



then by continuity F(O) = 0 and

oo

_-OO" _'-" •......

2.3 The Convolution theorem.

In section 2.1, we have shown that (1.17) - (1.22) hold for

generalized functions. It can be shown that (1.23) and (1.24) also

hold. However, in order to extend (1.26) and (1.28) to include

generalized functions, some restrictions must be placed on these

functions. If we try to give the symbol

co
t%

(f * g)(x) =_.oo(Z)g(x-z)dz (2.23)

a meaning for generalized functions f(x) and g(x), then in the case

where f(x) and g(x) are ordinary functions, (e.eB) must have the same

meaning as ordinary convolution. We have already found that for the

convolution theorem restrictions are necessary on the ordinary functions

f(x) g(x).

Suppose the generalized functions f(x) and g(x) are defined

by the sequences { fn(X)} and {gn(X)} respectively. Consider

the sequence

co

: z)gn(x-z)dz. (2.24)an(X)

For each n, an(X) is a test function. To see this, we let fn(X) <---->

Fn(Y) and gn(X) _ > %(y). Applying the classical convolution

theorem gives

co

2_ ixy

an(X) = __ooFn(Y)Gn(Y)e dy.

2O



NowFn(Y)%(y) is a test function and, by theorem i, so is an(X).

For H(x) ¢ S with z-l(H) : h(y)

oo co oo

/ an(x)H(x) dx = /H(x) dx / Fn(Y) %(y) e2_iXYdy

-(D -oo -oo

oo oo

-fFn(y)GC,)dyfHCx)e2 iXYd 
-00 -00

O0

=/F(y)GCy)hCy)e.
-O0

NOw h(y) is a test ftmction, but in general the sequence {Fn(Y)%(Y) }

is not regular. Hence {an(X) } m_y not define a generalized function.

In the functional analysis approach (see [4], p. 106), it is

shown that by al_propriately restricting f(x),(f*g)(x) is a generalized

ftmction for all g(x) c S. Of primary interest to us here is the case

when f(x) is a linear cQmbination of Dirac delta functions. To avoid

some tedious convergence problems which arise in a general approach,

we shall restrict our discussion to this case.

Let g(x) be any generalized function defined by {gn(X)}
and

define 8(x) * g(x) by the sequence

Go

an(X) = ._cos (Z)gn(X'Z)dZ"

Since gn(X-Z) is a test _anetion, we have, by (2.21),

%(x)- %(x).

Also

oo

an(X) =f%(z) S(x-z)_.

-(D
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Hence

_(x) * g(x)= g(x)* S(x) = g(x),fora_ g(x)_ _.

Since Z(8) = l, we have

z(_ (x)* g(x))--z(_ )z(g).

In a like manner we find that

Since

and also

we have

8(x-xo) * g(x): g(X-Xo).

-2_ iXoY

z(g(x-xo)) --e z(g)

-2_ iXoY

Z(a(X-Xo)) = e

z(_ (x-xo) * g(x))= z(S (X-Xo))Z(g(x)).

Theorem 6. Let a.j and xj, - M_< j _< N, be constants and let

N

a(x) =_ a.j S(x-xj).
j=-M

Then if g(x) is any generalized function,

z(a(x)* g(x))= z(A(x))Z(g(x)).

(2.25)

(2.26)

(2.27)

Proof: This follows easily from (2.25), and the linearity property

of the convolution and of Z. For we obviously have

[a1 8(x-xl)+a2 8(x-x2)]* g(x)= all8(x-xl) * g(x)]+a2[8(x-x2) * g(x)].

By induction

N

a(x) * g(x)=_ aj[$(x-xj)* g(x)].
j=-M
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Applying Z to both sides of the above equation and using its linearity

property gives (2.27).

Let H(y) = Z(A(x)) and G(y) = Z(g(x)). Noting that

N

a(x)* g(x)= Z ajg(x-xj)
j=-M

and applying Z-1 to both sides of (2.27), we have

N

j=-M

g(x-xj) = z'l(H(y)G(y)). (2.28)

2.4 Trigonometric serie_____s.

If fz(X) is a generalized function for each value of the

parameter z and if f(x) is a generalized function such that

OO OO

(2.29)

for all F(x) ¢ S, the f (x) is said to conver_e (weakly) to f(x) and
Z

we write

l_ fz(X)= f(x).z-_a

With this definition of convergence in 8, we have the foll_ving

theorem.

Theorem 7. fhe trigonometric series

in_
P

CO

Ze%
n=-co (2.30)

converges in the sense of (2._) to a generalized function f(x) if

_d o_ if a : O(InlN) for someN as Inl_ _- If (2.30)converges,
n

then its Fourier transform is
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OO

s ngCy) = an (Y_p)"

n=-Oo

Also f(x) = 0 only if a = 0 for all n.
n

For a proof of this theorem, we refer the reader to [3], PP-

58-6O.
1

The function g(y) is called a ':r_r of deltas" of spacing _p.

fn n+l_ of g(y)
This comes from the equality on any interval _2p'2p "

f n , _l_.
and an ordinary function which is zero on _p'2p' ' If f(x) is

a periodic and has a Fourier series representation, then the a
n

are the Fourier coefficientm

(2.31)

P -in_x

I _pf(X) e _dx.an =_p .

This is equivalent to the statement that convergence in the ordinary

(strong) sense implies convergence in the sense of (2.29) and that

the limits are the same. The converse is not true, for by theorem 7

OO

Z xcos nx- converges in the sense of (2.29), but obviously not to an
P

1%---OO

ordinary function.

2.5 Th__eetime-frequency interpretation of x and y.

If we take x to be time t, the function

2_if t
o

g(t) = e

of frequency f > O has transform
O --

G(y) = #(y-fo).

In the sense of definition 8, G(y) = 0 for y _ fo' i.e., G(y) displays
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the frequency of g(t). If

then

-2_if t

g(t) o= e

_(y) = 8(y+fo)_

and G(y) = 0 for y _ -f . Hence, if we admit negative frequencies,
O

G(y) displays the frequency of g(t), and we are led to interpret y

as frequency.

If h(t) is a function which can be written as

N
2xif tV_

h(t) =_ a e n

/, n

n=-M

where M,Nmay be infinite provided the series converges in the sense

of (2.29), then

N
V_

H(y)= %
n=-M

H(y) = 0 for y + fn' "M _ n _ N. Thus H(y) displays the frequencies

f and the complex amplitudes a of the components of h(t).
n n

A Fourier series has for its transform a "row of deltas"

(2.31), and thinking of the Fourier integral as the limit of a Fourier

series as the period _p tends to infinity (see [8] or [91), the

frequency interpretation of y carries over into integral sums. Using

the symbol f instead of y, we have that if h(t) is a function of time

with Fourier transform H(f), then H(f) displaysthe frequencies and

the complex amplitudes of the components of h(t).
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CHAPTERIII

FILTERS
\

3.1 Linear systems.

A linear system, for our purposes, is a linear operator L

which maps S into S. By linear we mean that for all f(t),g(t)
I

E S and all scalars a,b

LEaf(t) + bg(t)] = aL[f(t)]+ bL[g(t)]. (3.1)

Let L[ _(t-¢)] = h(t;¢), and suppose that the family of functions

h(t;¢) is known. Let g(t) be an arbitrary function which we will

refer to as the input to the linear system L, and let f(t) = L[g(t)].

f(t) is called the output of L. Now since

OO

g(t) = _fj(¢) _(t-¢)d¢,

we have

Assuming that (3.1)

OO

f(t) = L[ fJ(¢). _(t-c)d¢].

is sufficient to write

OO OO

L[foog(¢). _(t-¢)dg] = _foo[g(¢)$(t-E)]d¢,

then

OO

f(t) = .fJ(E)L[ 8(t-¢)]de

O0

= f_.oog(E)h(t;¢)dE"
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Supposethat L satisfies the condition:

(A) If L[g(t)] = f(t) and to is real constant, then L[g(t-to)]

= f(t-to) , i.e., L is time-invariant.

Then if L[I(t)] = h(t), L {_(t-t o)} = h(t-t °) and

oo
f_

f(t)= (3.2)

that is, the output of L is given in terms of the input and a unique

function h(t). The function h(t) is called the impulse response or

function of the linear system L, and its Fourier transform

oO

H(f) = _eo_(_)e'2_iftdt (3-3)

is called the system or transfer function of L.

We note here the different uses of the symbol f. When used

alone or as an argument, f denotes frequency. (See 3.3). When f

is written with an argument, f(t), it denotes a function of the time

variable t. (See 3.2)

Note that (3.2) is the convolution g_h. If f(t) <---> F(f) and

g(t) _ G(f), then using (3.2) and assuming that the convolution

theorem holds, we have

and

f(t) = g(t)*h(t) _ G(f)H(f)

F(f): G(f)H(f),

OO

-_OO 2_iftcLc"
f(t) - G(f)H(f)e

That is, the Fourier transform of the output of the linear system L

is equal to the product of the transforms of the input and the weight

function h(t). We also note that if G(f) is the transform of an input
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and F(f) is the transform of a desired output, then from (3.4) the

transfer function of the linear system L giving the desired output is

HCf)
= sCf)

H(f) may in general be co_lex [see (1.4) ]

H(f) = A(f) eie(f)

where A(f) and e(f) have already been defined in the classical case

as the Fourier spectrum and phase angle of h(t), respectively.

Definition 9. A linear system L which satisfies (A) is called a

filter if A(f) is small in some sense on certain parts of the frequency

axis. A low-pass filte_____ris a filter for which A(f) is small for Ifl >

f where f is called the cut-off frequency. A band-pass filter is a
C C

filter for which A(f) is small outside the intervals [-fc,-fc] and

[_c,fcl. A frequency f is said to be passed by a filter if A(f) is

not small.

3.2 Ideal low-pass filters.

We shall restrict our attention here to some particular cases

where the phase angle e(f) is constant,

o(f)= a. (3.6)

Ideal smoothin_ filter.

This, by definition, is a low pass filter which passes all

frequencies f such that Ifl _<fc without change and deletes all

frequencies greater than f • No phase shift is involved, and
e

hence a = 0.

Thus

See figure 3.1.

H(f) = A(f) =

i Ifl _ fcIfl> f.
C

(3-7)
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H(f)

1

l l
-f f

C C

Figure 3.1.

The corresponding weight function is

f
C

h(t ) = ff. e2_ift df

C

f
C

= 2 _ cos 2_(ftdf
Jo

sin 2_f t
C

_t

or in terms of the angular frequency w = 2_f,

-f

(3.8)

h(t) =
sin Wct

_t (3.9)

If g(t) is the input to this filter, then the output is

OO

f(t) = ._cOi(z)h(t-z)dz,

which has transform [see (3.4)]

F(f):

where g(t) C > G(f).

than f .
C

i(f)H(f) Ill _<fo
Ill> _c

Hence f(t) contains no frequencies greater
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Ideal smoothing and differentiatin_ filter.

By theorem 3(b), if g(t) _ G(f), then

g'(t) _ (2_if) G(f).

Repeated application of this theorem yields

g(n)(t) _ (2_if)nG(f) (3.10)

th
From (3-5) we see that to find the n--- derivative of an input g(t)

the transfer function must be (2_if) n. Then, in order to smooth

th
using the ideal filter and find the n--- derivative, the transfer

function is given by

2_if) n Ifl < f

-- C

H(f) = (3.11)

Ill>fo

and the weight function is

f
C

nn(t ) = f (2_if) n e2_iftdf. (3.12)

-f
c

But differentiating (3.8) n times, we have

f
C

h(n)(t) =I (2_if)n e2_iftdf (3.13)

-f
e

and so

hn(t) = h(n)(t) (3.14)

Thus to find the _eight function of the ideal smoothing and different-

iating filter we simply differentiate the weight function of the smoothing

filter the appropriate number of times.
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Then

Go

g(n)(t) = Joog(z)h(n)(t-z)dz. (3._5)

3.3 The sampling theorem.

Ideal filters of the type discussed above are not physically

realizable because of the jump discontinuities at +_ fc" Futhermore,

in digital filtering the input consists of a finite number of equally

spaced values gm' M <_m <_N, which we may assume are samples of some

m

function g(t) for t = m&t = _-. We may also assume that g(t) defines
S

gm are associated with a subset GMN

If we knew that the samples gm

whose transform G(f) is zero for Ifl

is reduced to a subset _ _ _N"

a generalized function, for, recalling theorems 2 and 5, this does not

place a serious restriction on g(t). It is obvious that g(t) is not

uniquely determined by the values gm' and hence the set of values

of _.

arise from a function g(t)

> f_, then the subset GMN of

In this case g(t) is said to

be band-limited.

Theorem 8. Shannon's s_mpling theorem (see [5]).

If g(t) is band-limited, i.e., if g(t) < > G(f) where

then g(t)

G(f): o Ill fG

can be uniquely dete_nnined from its values

(3.16)

n

gn = g(2-_ )

i

at a sequence of equidistant points of distance _ apart.

(3.17)
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Futhermore

sin _ (2ft-n)
g(t) = gn _ (2f(%t-n)

n=-oo

Proof: We first compute the gn" We have, using (3.16),

f
(%

g(t) =•If(_.G(f) e2_iftdf'

hence

f .f
(% n_l _---

gn = g(_f )= f G(f)e f(% df.

-%

Expanding G(f) in a Fourier series on (-f(%,f(%)we have

.f

G(f) =_, Gne , -f < f < f ,

n=-eo

where
f .f
(% n_ 1-2-

1 f G(f)e
Gn =_-_

-f(%
comparing (3.19) and (3.21), we have

'l_e function

gn

n 2f_ "

OO -n_ i_

G(f) : ..... _ e
11=-00

is the periodic extension of G(f) and

df

-oo < f< oo,

for -f(%< f < _(%.

(3.18)

(3.19)

(3.20)

(3.21)
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Hencewe maywrite

G(f) = H(f)G(f)

where
1

H(f) =

o Ill > •

NOW [see (3-7) and (3.9)]

sin 2_f t

_t
H(f).

So we have

.f
-n_ l_--

co gn _

G(f) = H(f) S _ e

n=-O0

.f
O0 -n_ l_---

n=-co

and

.f
-n_ l_--

leo _ gn 2_iftdf
g(t) = [ -z_--H(f)e O_]e

_ _IG
n=-cO

.f

g_n F_(f)e "nXl_-T-_
2_iftdf"

2fc_ e"-00
n:-oo

Applying the t domain shifting theorem gives

g(t) :

O0 sin 2_f_(t- n

_ g_q_n (_n
2f x(t- )

n---OO

(3.24)

cO sin x(gfGt-n)

S gn _2f_t-n

n =-00
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i

If fs is any number such that fs--> 2fez, then the theorem remains

true if in the proof the periodic function G(f) is assumed to be of

f f

_ f , I < _ ; H(i") = 0 for ifi > ?...... and H(f) = 1 for If' s
s

Therefore

sin _(fst-n)
g(t) = __gn _(fst-n)

n=-oo

(3.25)

where

gn = g(_s )" (3.26)

If the gn are known, as assumed above, for M < n < N, then the

funct ion

N sin _(fst-n)

%_(t) = _ gn _(fst-n) '

n=M

differs from each function g(t) of _ by

(3.27)

M-I sin _(fst-n) _ sin _(f t-n)
g_Ct) = _n _(f t-n) + gn '.'(fs'tSn) ''g s .....

n=-oo n=N+l

(3.28)

:where gn g . Hence, at least in the eases where the series in
s

(3.25) converges uniformly to g(t), the maximum difference

Max I¢ E(t )I= max Ig(t)-_,,_(t) I
t t

(3.29)

can be made as small as we please by taking a sufficient number of

terms in g_(t). Hence we can associate _rith the samples {gn} a

unique function g(t) in the sense that (3.29) can be made arbitrarily

small by ta/[ing a sufficient number of samples.
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3.4 Definition of a digital filter.

Suppose that the sampled function g(t) is band-limited.

Then G(f) = 0 for Ifl > fG" If H(f) is a desired transfer function,

then H(f)G(f) = 0 for Ifl > fG. Thus if H(f) is a periodic extension

of H(f) with period f > 2f(_, we have the transform F(f) of the output
S N

f(t) given by

F(f) = H(f)GCz) = HCr)aCf), (3.30)

for all f.

If H(f) is such that H(f) can be written as a trigonometric

series,

with a
n

H(f) ¢ S and is the transform of

OO

h(t) =_ an 8(t_-f )
S

n=-oo

f
2n_ i-_--

H(f) a n

n=-co

: o( InlN) for so_e N a_ InJ -_ _, the_, by theorem 7,

(3.31)

(3.32)

Now g(t) is time sampled. In order to obtain a time sampled version

of the output f(t) we might try to define a convolution h(t)*g(t)

and extend theorem 6 to functions A(t) = h(t). Assuming that we

could do this, we would have

OO

f(t) =_ ang(t_-f )
S

11= -OO

m

which would yield the sampled version of f(t) for t = _-- as
S

OO

S S
n=-O
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which is impossible to use digitally since it requires infinitely

many samples.

Alternately, let

N 2n_i_

HMN(f) = 7. ane s (3.33)

n=M

be a trigonometric polynomial which approximates H(f) in some sense.

Then (3.33) is the transform of

N

h_(t) =_. an 8(t+), (3.34)
S

n=M

and we have shown that the convolution hMN(t) _ g(t) is defined for all

g(t) ¢ _. Also, theorem 6 holds. 1_us

F(f) = G(f)H(f) "- G(f)HMN(f) = F(f)

and ?(t) _ F(f) is given by

(3.35)

Y(t) : hMN(t)*g(t)

N oo

nan (z) 8(t-z + _-)dz

n=M - s

N

S
n=M

m m

For t : _-, fm
S

: T( m___ mf "' gm= g( f--)' we have
S S

N

m angm+n

n=M '

_his is the fundamental formula of digital filtering.

(3.36)
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Note that any pair (3.33) and (3.34) determine a linear operator

L on S which satisfies condition (A) and, on the subspace G of all
S

band-limited functions g(t) with 2f(z <_ fs' acts as a low-pass filter.

Now any finite set of constants a determines a function (3.34),
n

which determines (3.33) and hence a linear operator L.

Definition lO. Let an, M _< n <_N, be any set of constants. Then

the linear system L determined by the a is called a digital or
n

numerical filter.

Application of _ must be limited to the subspace G • Otherwise
s

"frequency folding" occurs, i.e., frequencies in the intervals
(2n-1)f (2n+l)f

s) _' 2 n = + l, ± 2, . . . are folded back into the

f f

s 2). For example, suppose the input contains a frequency(-
f

component Acos 2_(fo+kfs)t where f < so -_ and k is a positive

n
integer. Then if we sample at t =

f ,
S

kfs)__- nAcos [2_(fo+ ] = Acos [2_f° _-- + 2nk_]
S S

= Acos (2_f° _).
S

The sample values would be the same as those obtained from a component

t for t n
Acos 2_f ° = ?- . Hence the filter treats the frequency

S

f
f + kf > s
o s -_ in the same manner as fo"

3.5 Even and odd transfer functions

In cases of interest here, the transfer function H(f) is either

even or odd. Hence the trigonometric polynomial I_dN(f) which

approximates H(f) can be written in terms of cos 2n_ and sin 2n,_
S S
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respect ively. If we take M = -N some advantages are gained. Let

N 2_ni_

V _ _ s

-n v
n=-N

For even functions,

N

_(f) = a + 2 _ a cos 2n_.
o n s

n=l

( 3- 38)

For odd functions,

N

HN(f) = 2i_ an sin 2n_.

n=l s

(3.

Two questions n_{ arise:

(1) given H(f), h_r are the coefficients an to be chosen, and

(2) what is the error introduced by the approximation

F(f) =" F(f)?

3.6 Methods of filter approximation

If H(f) is an ordinary function, there are m_rentlytwo methods

of approximating H(f) and obtaining the coefficients an. One of these

methods--the Min-_h_x technique--is given by Martin [7]- Essentially,

it assumes continuity of H(f) in which case, if Qn(f) is a set of N

f f

__],s thencontinuous and linearly independent functions on [- _

there exists a polynomial

PN(f)= alQl(f)+ . . . + aNQN(f)

f f

s s i.e
which deviates the least from H(f) on (- -_, -_), .,
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N

IH(f)-PN (f) l < _ IH(f) - 1 XnQnCf)l
f f - f f
s s s s n=l

f c (- -_,-_) f ¢ (. -_,-_)

for any numbers Xl, x2, .... , xN. The Qn(f) are obtained after

putting a constraint (or constraints) on a trigonometric polynomial

(3-37). PN(f) is then fitted at a finite number of points to H(f)

in the above sense. A good approximation of the an is obtained by an

iterative process, but the technique is long and complex, and not

very versatile. That is, any change in H(f) necessitates a complete

repetition of the process for finding the a .
n

The alternate method'assumes that H(f) can be approximated by

a Fourier series,

co 2n_ iff--

H(f) = >. hn e s

n =-OO

where

(3._o)

fs

--2 -2n_ iff--

h - i_ ff H(f)e Sdf, (3.41)
n fs __-s

2

and HN(f ) is taken to be the truncated series for H(f),

N 2n_iff--

I e sI f) = hn .

n=-N

(3.4e)

This gives a function which is the best fit to H(f) in the least mean

square sense.
f
S

Noting that, since H(f) = 0 for Ill > -_,
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f
S

-_ 2n_+

hCt) =f HCf)e s

-f
S

2

df_

and comparing (3,43) and (3.41), we see that

(3-43)

I h(-_)hn f
S S

This is the basic formula for computing the h = a
n n

Therefore (3.36) can be written as

N

n=-N

(3.443

to use in (3.36).

(3.45)

3.7 Error anal_sis.

With an approximation HN(f) of H(f), (3.35) becomes

and so

F(f) = G(f)H(f) "=G(f)HN(f) = F(f),

F(f)-_(f): G(f)[H(f)-H_f)].

This gives the error between the spectrum of the desired output and

the spectrum of the actual output.
2_if t

a complex frequency component go(t)For Ae
O

in the input

we have

2_if t

go(t)..= Ae o <-----> A _(f-fo ) = G(fo )

and

F(f o) = A 8 (f-fo)H(fo),

4O



also

F(fo ) = A 8(f-fo)_(fo).

Denoting the difference in the outputs by ¢(fo,t) we have

OO

2_if t

= IAe o [H(fo) - _(fo )]I

2_if t

= IAe ° I • I ¢(fo,N) l,

where e(fo,N) = HCfo ) - HNCfo ).

In the time sampled version:

2_if n__
of

n

I  (fo, = IAe sl" I
S

(3.46)

Thus the magnitude of the error in a component of the actual sampled

output is given in terms of the magnitude of the corresponding component

of the input function, and of the magnitude of the error in the approx

imation of H(f),

Approximations of ¢,

¢ = max I e(f,N)l = max IH(f) - HN(f)I
f f

(3.47)

derived mathematically are usually found to be so large as to render

them useless in applications. In applications of the filters dis-

cussed later, acceptable values of _ are in the range .005 _ ¢ _ .01,
i

or referred to unity, _°Aand i@/_ When speaking of percent error

we will always mean ¢ referred to unity. For a given H(f), an N is
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found empirically such that HN(f) approximates H(f) within the desired

limits.

However, _,ing t _...... _.... + +_* _= __ ............... vv2 < g < does not
-- m

imply the output error is within these bounds (see Chapter VII).

3.8 The Gibbs' phenomenon.

When approximating an ideal or designed transfer function

H(f) having one or more jump discontinuities with a truncated

Fourier series, there exist oscillations in the approximating

transfer function HN(f) near the discontinuities of H(f) due to the

Gibbs' phenomenon (see [10]). No matter how large N is taken, ¢

cannot be brought within the acceptable range .005 < ¢ < .O1. To

avoid this difficulty H(f) is first approximated by a function which

is continuous. In most cases, this imposes a restriction on the

input g(t). The particular cases of interest here shall be dealt

with in the next chapter.
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CHAffER IV

FILTER DESIGN

4.1 Assumptions about the _.

In order to apply a digital filter to a set of data {gn} '

we have made two assumptions about the data:

I. It arises from a function g(t) which defines a generalized

function, and

II. g(t) is band-limited.

In many cases of interest, the Fourier spectrum G(f) of a signal

g(t) consists of a desired signal spectrum in an interval [-fc,fc],

an unwanted signal spectrum (noise spectrum) in intervals [-f(_,f@)

and (fc,f_], and G(f) = 0 for Ifl > fG" _qen applying a low-pass

filter, elimination of the unwanted spectrum is desired. Hence the

ideal filter transfer function, Hi(f) , is such that Hi(f) = O,

Ill> f. Usually HI( +fc).+ 0 and Hl(f) has jump discontinuities

_ • If the truncated Fourier series of Hl(f) is used toat f=+ fc

approximate Hi(f) , then, due to the Gibbs' phenomenon, large

_ . Futhermore, the am-oscillations persist in a neighborhood of + fc

plitude of these oscillations remains constant with increasing N.

The truncated Fourier series is continuous ever_wrhere because it is

a finite sum of ever_here continuous functions. Since Hi(f c) _ O,

:_e expect that the truncated series, _(f), is such that HN(f c) _ O.

Then, by continuity, _(f) is non-zero on some interval (fc,fc+Af)

v_here Af > 0 and depends on N. Any u_anted frequencies which

appear in this interval are passed--though somewhat attenuated--by
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the approximating filter. Hence, in addition to the large oscillations

which appear near +--fc'urn.rantedfrequencies arbitrarily close to +fc

cannot be eliminated by increasing N. This undesirable property must

be tolerated because it is a property of any truncated Fourier series

such that HN(fc) + O. Hc_ever, the large oscillations are caused

by non-uniform convergence of the Fourier series of Hi(f). This can

be remedied by redefining Hi(f) so that it is a continuous function.

We choose to do this on the intervals [-fc-Af, -fc ) and (fc' fc+Zkf)

for some Af > O. Any unwanted frequencies in these intervals will

be passed to some extent by the filter, but, as pointed out above,

this cannot be avoided an_n_ay. However, in many applications unwanted

frequencies do not appear near +f . Therefore, we make the following
-- C

third assumption about the data:

III. The desired signal spectrum and the unwanted spectrum of g(t)

are disjoint.

Then there exists a Z_f > 0 such that the signal spectrum G(f) = O

on (-fc-Af, -f ) and (f , f +Zkf). Letting fT = f +&f' we may modify
C C C C

Hi(f) on ['fT' -f ) and (fc' fT ] to obtain a function H(f) contin-
C

uous for all f and thereby eliminate the Gibbs' phenomenon. H( f),

as defined on the intervals ['fT' -fc ) and (fc' fT ]' is called the

roll-off of the filter, and the frequency fT is called the termination

frequency.

4.2 Filter design by convolution.

The usual approach to the design of a filter is to select the

ideal transfer function Hi(f) on [-f , f ] and then to specify theC C

roll-off. This gives the filter transfer function H(f) from which

the weight function h(t) is found. The weights of the filter to

be used in (3.45) are then computed frcam (3.44). In addition to

not being very versatile, this approach usually involves some

rather long and tedious integration in determining h(t).
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We propose a different approach to the design which simplifies

the integration and gives considerable freedom in varying the roll-

off shape of the filter. We shall use the convolution theorem of

Chapter I:

O0

g(t)k(t) " _ z)dz

f%

*---* GCf-z)K( (4.1)

where g(t) _ > G(f) and k(t) <-----> K(f).

We note here that filters for simultaneously performing smoothing

and differentiation can be found from the weight-transfer functions,

h(t) and H(f), of the smoothing filter in a manner analogous to that

in the ideal case [see section 3.2]. That is, to smooth and find

th
the n--- derivative, the transfer function is

With

we have

where

-X

In (4.3a), let t : _--.
S

_(f) --(2_if)h(f).

yn(t) _ _(f),

yn(t) = h(n)(t)

h(t) <-----> H(f).

n

Then tn = (_)
S

Hence

(4.2)

(4.3a)

1 .n n

and dt n : (- _-) dx .
S

yn(_)
S

S

n

(-_) a_n
S

(.l)nf n
S

S

dx n
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Using (3.44) to compute the weights of the filter, we have

n 1 .vn( __.___k_Yk = f-- ....
S s

1 nt -X_ i

= ?-_ tF-J Jx=_
S s

= (.1)nf n { an
6 dxn x=k"

We now see that we may write

n ndnhk

Yk = (-1)nfs dk---n-
(4.3b)

where _ = lf--h(_) and, for purposes of differentiating, k is treated
S s

as a variable in the right side of (4.3b).

Returning to the problem of designing the filter, we conclude

from the above that we may restrict ourselves to the design of smooth-

ing filters. Hence suppose that

GD

H(f)=_G(f-z)K(z)dz. (4.4)

Ideally, for smoothing we want H(f) to be continuous, and

H(f)=

i, 0 <_ f _< fc'

monotonic decreasing,

O, f > fc'

H(-f),f < o.

We attempt to find function G(f) and K(f)

given by (4.4) has these prcgerties.

fc < t < f_, (4.5)

such that H(f)
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Then the weight function h(t) is given by

h(t) = g(t)k(t).

Let

a(f) =

fc+fT
_, Ill < 2 ,

o Ill >_fe+fT
2

Then comparing with (3.7) and (3.8), we see that

sin _(fT+fc)t

g(t) = _t

Noting that G(f-z) = 0 for If-zl > fT+f c
2 , (4.4) becomes

fT+fc
f+--

2

H(f) = / _(z)dz.

fT+f c
f. --

2

(4.6)

(4.?)

(4.8)

To find H(fo) , K(z) is integrated over an interval of length (fT+fc)

with f as its mid-point. Any function K(z) which is zero for
O

fT'fc AfIzl> and is an even function of z with area i on

-AfAr
[-_',---_] yields a satisfactory H( f).

Filter I. The Ormsb_ smoothing filter (_l).

In (4.8) let
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See figure 4.1.

K(z)--_(f)

0 D

b

(4.9)

I I

Fi_e4.1.

-- f

Then

f"

m

2

kl(t) =f

-Af

2

i e2_iftdf

Af

2
J ( 2_:ft, )drCOS

0

L_f

2

i [ sin 2_ft ]

0
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and

hl(t) = kl(t)g(t)

sin_Aft sin_(fT+fc)t

.g2Aft2 '"

Ghanging to the angular frequency w = 2_f, Aw = 2z_kf, wT

wc = 2_fc, we have

hl(t) =

(wT+wc)Awt
2 sin -_- sin 2

z_t 2

and applying a well-kn_n trigonometric identity

(4.1o)

= 2_fT,

hl(t) =
cos w t - cos wTtC (4._)

This is the weight function given by Ormsby [ii] for p=l. The

corresponding transfer function as a function of f is

"1, Ill <_f_,

o, Ill > fT'

_+fT
--_-, -z_ _<_ < -fc'

fT-f
< f< fT"--_' fc -

Hi(f) has a straight line roll-off (see figure 4.2).

Replacing f by 2_f = w gives the transfer function as given by

Ormsby in terms of w. We remind the reader that, when using the angular
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i/
H:(f)
1

I i
.f f

C C

Figure 4.2.

\

_--f

i
frequency w = 2_f, a factor of _-_ appears in the statement of the

Fourier integral theorem, i.e., if

oo

G(w) =.foog(t)e-i_dt,_

then

g(t)

oo

i Joo:(W) eiVt _r.

In the statement of the theorem in 0hapter I, we have

Comparing, we see that

oo

G(f) =.fg(t)e-2_iftdt.
_-00

G(f): 5(w): 5(2_f).

For convenience, we shall use the same symbol G for both G and G.

Then the argument of G determines which form of the theorem to use,

i.e., G(f) indicates the form of Chapter I is to be used and G(w)

indicates that the above form is to be used.

Finally, note that
_l(f)

_ and + fT"df is discontinuous at + fc -
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Filter 2. Th__£eMartin-Graham smoothin_ filter.

In (4.8) let

K(Z)= K2(f):

See figure 4.3.

_f 2_f
co__ , Ifli _ ,

O_

K2(f)

--_ ZXf
2 2

Figure 4.3.

(4.12)

f

Then

k2(t)

_f
2

-_f
2

COS _f e2_iftdf

Z_f

2

x f _f= _ cos cos 2_ft df

0

L

-_f 2(__f- 2_t) +

2

sin(_ +2_t)f ]

0



sin(_ - _Z_t) sin(_ + _)

:-!-I[ 1 + i
PZ_f (3 " 2t) (3 + 2t)

=_ (_._) + l(3 + 2t)

'l"ne n

cos

(l-4Zkf2t2)

h2(t) = k2(t)g(t)

cos _ sin _(fT+fc)t

_t(1-4Af2t 2)
, (4.13)

where_ 2 = (Zkf)2. We will also use the notation Aw 2 = (_)2.

Letting w = 2_f gives

h2(t) =

Awt
cos --_- sin 2

(WT+wc)t

Z_w2t2
_(i- T )

and using a well-known trigonometric identity gives, after simplifying,

_(sinWct + sinwTt)

h2(t) = 2t(_ 2 _Z_w2t2) ,. (4.14)

This is the form of the weight function given by Graham[12].

The form given by Martin [6], [7] is obtained from (4.13) by

f Zkf etc. and ccmputing
going to the frequency ratio r = _--, 2h = rd = _- ,

S S
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1 n

h n = _-- h2(- -_--.)
s S

.

f_
S

h
cos [_(Zhrfs)(- _)] sin [_fs(rc+rT)(- _--)]

S S

2

_(_ _)(l.4rd2f 2 n_.._)
s' s f2

s

= cos [n_rdl sin [n_(2rc+rd) 1 (4.15)

This is a convenient expression for computing the weights h of the
n

filter. The value of h° is computed by using L'Hospit_l's rule_ and

h° = 2rc+r d

WT+W c
- . (4.16)

2_

1
The same procedure must be used for finding h if m = _--j-,giving

_(2_._+rd)

h =2rd2sin( ')"

The transfer function of this filter, in terms of w, is

"i lwl <_Wc,

o, lwl>wT,
1 _(W-Wc)

H2(w) = _[l+cos aw ], w <w<c WT'

_(w+we)
_r_tl+cos 2_W ] '

b

See figure 4.4.

Alternate expressions for the roll-off are

-wT < w < -wc •

(4.17)

(4.1s)

_[I+cos _(W+Wc)
nW

_(w-wo)
]-cos2( _ )
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/
e i

-wT -wc

1

Fi_e4.4.

W

and

l _(W+Wc) 2 _(W+Wc)
_[l+cos _w ] = cos ( Z_w

Note that H2(w) has one continuous derivative, and

.

dw2

continuous at + wT and + w c.

!

wT

is dis-

54

4.3 Comparison of the performance of the 0rmsb_ and Martin-Graham

smoothing filters.

A comparison of the above filters can be drawn by expressing

H1,N(f) and H2,N(f) , the truncated Fourier series for Hl(f) and

H2(f), respectively, in integral form. We expand Kl(f) and _(f)

in a Fourier series, then truncating these series gives:

fT+fc
f+_

2

Hi,N(f) = f KI,N(Z)_,

fT+f c
f-- --

2

f+ fTefc
2

H2,_(f)=f K2,1_(z)az

fT+fc
f-- --

2

(4._9)

(4.20)



Since K1,N(Z ) is the truncated series of a function _rith jump dis-

continuities at +_ _ [see(4.9)], the Gibbs' phenomenon is present.

Hence overshoot is present near +_ _, the amplitude of which can not

be reduced by increasing N. We can expect some relatively large

oscillations to be present, at least for small values of N, in

H1,N(f). K2(z) is continuous, and the amplitude of the oscillations

of K2,N(Z) decreases monotonically with increasing N. Hence we expect

the Martin-Graham filter to perform better than the Ormsby (p=l)

filter. The results of comparative programs where the truncated

series (4.19) and (4.20) were computed at equidistant points indicate

that this conclusion is true. For e = .O1, over 50O/o more weights

were required by the Ormsby filter.

4.4 Some n_,z smoothin G filters

We shall give, without performing the details of integration,

several new designs which are of some interest. The transfer function-

weight function pair will be given in terms of the angular frequency

_._ = 2_f.

Filter 3" Let

Then

K3(w) =

P

o lwl>o

42 2 sin_-t

k3(t) =
4_2__pt 2 &_'_

(_.2m)

h3(t) = k3(t)g(t )
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Awt WT+W
2 sin -_- sin _ t

_ _ 4_2 _( 2 )
"42_Aw2t 2" Aw_t 2

4_2

- 4222t2
• hl(t)

(4.22)

where hl(t) is the 0rmsby weight function (4.11).

H3(w) is given by

The roll-off of

2(w-w c) WT-W
i sin _+-- w <w<
2-_ Aw Aw ' c WT '

and HB(W) has two continuous derivatives• (see figure 4.5)

Filter 4. Let

Then

K4(w)=

g--cos3 (_) , Iwl < _,

Aw
o lwl>-_-

(4.e3)

and

2 Awt

9_ _ oos-_-
kh(t) = . ,

9_2.Aw2t 2 (_2-Aw2t2)

h4(t) = k4(t)g(t)

2 Awt

_ 9,2 [_ cos -_-
92.Aw2t 2 2.Aw2t2

w_+w^

sin( _ '- _)t

_t

9_ 2
h2(t)

9_ 2.£_2t2

(4.2_)
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where h2(t ) is the Martin-Graham weight function (I_.14). The transfer

function H4(w) has three continuous derivatives and the roll-off is

given by:

for w

C

%_(_._)9 (_'we)= _ _os(--h-_-_-_)1-_ cos(
3(w-we) 1

mir _)+Z

< w _< wT. This is sh_n in figure _,_.5.

1

1

2

Q H roll-off

@ H3 roll-off

@H 4 roll-off

!

W
C

Figure 4.5

wT
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Filter 5- Let

(1- )
&w

0 ,

lw I <Aw

This gives a weight function, where AW 3 --(_¢)3

(4.e5)

58

= -- [sin (_)t]. [2 sin -_ t - t2_¢ cos-_ t] . (4.26)h 5(t ) 12 WT+Wc

H 5 < w _ is a third degree polynomial and isThe roll-off of (w), w c WT,

essentially the same as that of H2(w).

Using the quantity c defined by (3.46) as a measure of the

performance of a filter to compare the above filters, one is led

to the following conclusions:

l) The Martin-Graham filter gives ¢ = .O1 with smaller N than

any of the others. In fact, out of numerous designs none

has been found which gives _ = ,O1 for sm_ller N than this

filter. The performance of filter 5 is essentially the same,

the c values differing slightly in the third decimal place.

2) Filters 3 and 4 give values of c < .005 for smaller N than

the Martin-Graham filter and filter 5-

3) In no case did the Ormsby filter perform as well as the

other filters.

In comparison with the Martin-Graham filter, the only advantage

filter 5 has is that no special evaluation for hn, n + O, is required;

h is the same for all the above filters. In addition to the improved
O

performance for g 5 .005, useable error bounds can be found for filters

3 and 4 without resorting to empirical methods.



4.5 Some smoothin_ error bounds

Except for filter 5, each of the above weight functions are of

the form

k(t)
h(t) = _ ,

where k(t) is an expression containing sums and products of trigono-

metric functions of t and P(t) is a polynomial in t. The Fourier

coefficients of H(f) computed from h(t) retain this character,

Now the error as a function of f and N is

c(f,N)= H(_) - H_(f)

Oo

fi V h cos 2n_ f

n fs
n=N+l

n

fs n=N+l P(" _-)
s

cos 2n_ f .
s

n f

Letting A = n_, Ik(- _) cos 2n_ f_s I, have

oO

fs n=N+l
s

(4,27)

N
If IP(t)l > 0 for t > _-, the sum in (4.24) can be approximated by

S
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8

Martin-Graham bound

The above method gives (see figure 4.6)

1 log 4N22_f2

c _<_ 41g_2_f 2
8

For ¢ = .O1, the predicted value of N is

N> 2.85 fs
- At"

and for ¢ = .005

4f

N>--A
- Af

These values of N are much too large. It has been determined

empirically that N >

1.25 f
S

Af
gives .005 < ¢ < .O1.

Filter 3.

For this filter,

Naf+fs] 2&]

¢ _<_ log [ NAf-f 4 "

S

For ¢ = .01, the predicted value of N is

2f
S

N>__,

3fs

and for N >_--_, e < .003 (see figure 4.6).

(4.28)

(4..29)

(4.30)

(4.31)

(4.32)
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•020

.019

•018

.017

•016

.015

.014

.0i3

.012

.Oil

.010

.009

.008

.007

.006

•005

.004

.003

.002

•001

!

i

Filter 2

iter 3

Filter 4__

I I I I I I I

2 3 4 5 6 7 8

Figure 4.6

| I I

10 11 12

I I I

13 14 15

I
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Filter 4.

For this filter

1 {9 log[4_2_2-_2f 2] _ 16 log[2_]

- log[4_2_ 2 - 92f 2j_.I,
s

For ¢ = .01, the predicted value of N is the same as in (4.32).

3fs (4.3S) gives ¢ < .0014 (see figure 4.6)
For N >_--_,

(4.33)

4.6 Smoothin5 filter constraints

In general, a signal g(t) may have a polynomial content, and in

such cases g(t) is not band-limited. Denoting the polynomial content

of g(t) by P(t), if

g(t) = g(t) + P(t) (4.34)

where g(t) is a band-limited function, then the weights can be con-
1

strained so that the sampled values P(mAt),At = _--, are passed
s

without error.

We recall that the output of a digital filter is given by

f __

m

N

_ hn_n.
n=-N

Applying this to the sampled version of (4.34) gives

f

m

N

_ hn[g%,+n + P[(m+n)At]]

n=-N

N N

_, hngm+n + _ hnP[(m+n)At]"

n=-N n=-N

(4.35)
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Since _(t) is band-limited, the first term on the right side of

(4.35) poses no problems. We_ant the second term to be P(mAt).

Assumingthat P(t) is of degree p,

P
,,--n

P(t) = ___ a'tJ'3

j=O

(4.36)

We want

P

P(m&t) = Z aJ (m&t)j

j=O

N
\--I

L--S

n=-N

h _ aj(m+n)JAt j.
n

j=O

Interchanging the summation gives

p p N

aj(m&t)J = _ aj _ hn(m+n)JAtJ.

j=0 j=0 n=-N

We see from (4.37) that it suffices to consider the kt-_hterm

(4.37)

mkAtk =

or, dividing by At k,

N

-]hn(m+n) k_t k

n=-N

k
m =

N

_ hn(m+n)k-

n=-N

Expanding (re+n)k and summing each term gives
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k
m

k
= m

N N

I h + kmk'l Inh + " ""n n

n=-N n=-N

N N

+(rk)mk'r lnrhn +""" _-_ nkh "n

n=-N n=-N

From (4.38) we see that it suffices to have

A:

N

n=-N

=l

B:

N

I nJh n = O,

n=-N

j = 1,2, . . .,p.

(4.38)

(4.39)

(4.4o)

The transfer function of a digital smoothing filter which approxi-

mates smoothing filters of the types discussed in section 4.2 is an

even function of f and can be written in the form

N

Hn(f) : h + 2 h cos _rm_--. (4.41)
o n s

n=l

The weights are related by h =h • Hence for odd integers j,
n -n

or

nJh = _ (-n)Jh
n -n

nJh + (-n)Jh = 0
n -n
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and

N

7 = O.nOhn

n=-N

(4.42)

Thus (4.40) is satisfied for all odd integers j without imposing any

conditions on the h . If (4.39) is satisfied, the filter passes a
n

first degree polynomial exactly. If, in addition, (4.40) is satis-

fied for j=2, the filter passes a third degree polynomial exactly,

etc. Practical considerations usually limit j to 2, i.e., P=3-

The simplest way to satisfy (4.39) is to use new weights

h

n (4.43)hn = N "

_' hn

n=-N

If N is chosen so that .005 _ e < .O1, the n_v weights usually do not

change ¢ significantly.

For j > 2 the usual approach is to derive the constrained

weights h so that the mean square error between the unconstrained
n

transfer function }L.(f) and the constrained transfer function
IW -

N

_L_(f) = h + 2 7 _ cos 2mr f--
o n f

L._J
n=O s

is minimized.

Note that (4.39) is equivalent to the condition

= z, (4.45)

and (4.40) is equivalent to the conditions

f=O

=O, l<J <p. (4.46)
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Taking the case P=3 and using a Lagrangian multiplier, we wish to

find weights h in terms of the h such that
n n

f
S

2 N

:f -
0 n=l

is minimized, i.e.,
_R

m

n2
n

(4.45) and (4.46) for P=3.

-- = O, 0 5 m_< N, and such that %(f) satisfies

(4.47)

f
S

-_ _ (f)

f N _+×m 2.0__a__= 2 [_(f) - H_(f) l 0 gOg
m 0 m

The condition (4.45) is incorporated in the following way:

SO

N

%(0) = ho + 2 _ _n = l,

n=l

Hence

N

ho ,__ n

n=l

(4.48)

_(f)-H_(f)= i + e

Therefore

N
V--:

n=2

_n(COS2nn _--f - l) -H_(f).
S

a_

-EN e (cos_ f i)

a_m s
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and

_R

m

f
s

2 N N

0 n=l s n=l

f
hnCOS 2nx_--]

s

f 2

[cos 2m_-- i] df + km .
s

f de
f s

Let e = 2_ _--, then df = --and2_
s

N N

cz-2  -h+2o
m 0 n=l n=l

C%-hn)COS nS][cos mS-l]de+ km 2.

N

2f s7=-- 1-2
n

0 n=l

N

- ho][COS me-l] + 2_(%-h n)

n=l

N

-2_(hn-hn) cos nS}

n=l

N

= _ {-_[i - 2 hn-ho] + _ (%-h m)

n=l

Setting this equal to zero gives

cos ne cos me

f

de+ km_

N

n=l

N

• XFrom (4.48) we see that we can replace 2
n

n=l

2
m = O.

-i by -h •
o

67



Thus

2f{Ehoo÷ + 0

-ho, thenLet _= h °

2

%-h : _ _mm 2f
s

Summing both sides of (4.49) from 1 to N, then multiplying both

sides by 2, and adding _ to both sides gives

N N N

$+ 2 - 2 hm (2N+I) _- _-- m

m=l m=l s m=l

or using (4.45) and reverting to the n subscript,

(4.49)

N N

Zl2_ __k = 1 - hO - 2 hn. (4.50)(2N+I)S rs
n=l n:l

2
Multiplying both sides of (4.49) by m , summing from 1 to N, using

(4.46)--(or 4.40 with j=2)--and reverting to the n subscript gives

N N N

n -27 n = - nhl_ n
n=l s n=l n=l

(4.51)

We solve (4.50) and (4.51) for 8 and X.

Let

N

QI = i - h - 2 _iho n
n=l

N

% _ _n_ n
n=l
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Then

and

Then

N

F2S1 = n

n=l

N

S2 = n

n=l

2fs[szQI+(_N+I)% ]
k=

(2N+llS2-aS12

%S2+2SIQ 2

8 =(2N+I)s2-2s12

(4.52)

(4.53)

o

and from (4.49), for n > 1

Note that

=h +_
o

2
n

_n =hn + _ - 2='_=" _
s

_S 2+2SIQ2-n2 [SIQI+ (2N+I)_ ]
=h +

n
(2N+I)S2-2S12

(4.54a)

(4.54b)

(2N+I)S2-2S12 =
N(m-L)(2_-I)(2N+3)(2.+I)2

9o

The constraint for p=l is obtained by letting _= O in (4.54b).

Then we have

= hn +_) n = O,1, . . ., N
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where

N

1-h -2 _lo n

r,=l

2N+l

1-_(o)
2N+I "

4.7 Band-pass filter

The ideal band-pass smoothing filter transfer function is

See figure 4.7.

1 f <f<f
c -- -- c

f > _. (4.55)
0 O<-f<fc' c

B1(-f) f< o

I I I I ---f

-f -f f f
c c Figure 4.7. c c

Note that Bi(f) can be written as the difference of two ideal smoothing

filter transfer functions [see (3.7)] Hl(f) and ]{2(f) , where H2(f)

has cut-off _c and Hl(f) has cut-off fc" Then the weight function

b(t)is

b(t) = h2(t) - hi(t ) (4.56)
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where

hl(t) _ Hl(f),

h2(t) _ H2(f) ,

and

b(t) <----->Bl(f ).

A useable design is obtained by taking the difference of two

low-pass smoothing filters of the types discussed in section 4.2 and

section 4.4. The difference of two Martin-Graham filters, each with

roll-off length Af gives a satisfactory filter. The weight function

of the resulting band-pass filter is then given by (4.56) with hl(t)

and h2(t) the weights of the Martin-Graham filters. The weights of

the corresponding digital filter are given by (3.44) and (4.56),

i b(_)bn = _-
S S

= _- [h2 1. (4.57)
S S S

Now suppose B(f;f o) is a band-pass smoothing filter with the

mid-points of the "pass bands" at +_ fo' "pass band" width 9_, and

roll-off width Af. For purposes of illustration, we assume that

B(f;f o) has the Martin-Graham type roll-off [see (4.18)I. Let

D

i O<f<Af

H(f)= _½[l+cos(f-_)_] _ < f_<_+_ (4.58)

0 f > Af+Af

H(-f) f < 0 •

See figure 4.8.
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H(f)

1

Af &f+Af

Figure 4.8.

T_f

Then H(f) is the transform of

For f > 0

h(t) =
sin 2_ + sin 2_(Af+_)t

2_t( i - 4Af2t 2)
(4.59)

B(f;fo) : R(f - fo),

and for f < 0

Thus

B(f;fo) : H(f + fo).

B(f;fo )

see figure 4.9.

= H(f - fo)+H(f + fo ),

B(f;fo )

(4.60)

I I I I I
-f

o

-1

Figure 4.9. f
O

_--f
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Taking the inverse transform of each side and using the shift theorem

(1.21) gives

2_if t -2_if t

b(t;t O) = h(t)(e o + e o )

= 2h(t)cos 2_f t. (4.61)
O

The weights of the corresponding digital filter are given by

f

bn(f o) = 2hnCOS 2_ 2, (4.62)
S

_- -- h •

where h n f
S g

For a given f , the weights can be computed from (4.62) more
O

quickly than from (4.57). If several successive filtering operations

are to be performed for a set of fo values, say fl,f2, • • "'fk'

then, using (4.62),

f

bn(f j) = 2hnCOS 2n_,
S

j = 1,2, • • .,k.

But in order to use (4.57) the functions hi(t) and h2(t) must be

changed for each new value of f_ and the entire expression must be

recomputed.

From (4.62) we see that the error e' of a band-pass smoothing

filter may be as much as twice the error ¢ of the smoothing filter

whose transfer _hmction is H(f).

In a manner analogous to the ideal smoothing case in section 3.2,

the transfer function of a filter which will simultaneously "band-pass"
th

filter and find the n-- derivative is

Bn(f)= (2 if)n B(f)
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where B(f) is the transfer function of a band-pass smoothing filter.

Then if b(t) <------>B(f),

b(_*'(t) = bn(t) _ > Bn(f),

and the weights [see the derivation of (4.3b)] are given by

(4.64)

bk = (-1)n(fs)n -- n'
dk

(4.65)

=l
where bk _-- be?).

S S

The weight function of a filter having several pass bands, each

of equal pass width and roll-off width, can easily be found from

(4.61). Let ± fl' ± f2' " " "' ± fk be the mid points of the pass

bands, and denote the transfer function by B(f;fl,f2, • • .,fk )

(see figure 4.10).
B(f;fl,f2,• . .,fQ

I

J,°°

I

-fl

1

Figure 4. iO.

Then the weight function is

k

b(t;fl,f2, • • .,fk ) = 2( _cos 2_fjt) h(t).

j=l

(4.66)
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The weights are given by

i b(_; .,fk)b n = _-- fl,f2, • .
S S

= 2h
n

k

( cos 2n_ ).

j=l s

(4.677
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CHAPTER V

MARTIN-GRAHAM FILTERS

5.i Introduction

We shall call a filter a Martin-Graham filter if its transfer

function either uses the Martin-Graham roll-off [see (4.18)] or is

derivable from a transfer function having the Martin-Graham roll-off.

In section 4.2, we discussed the Martin-Graham smoothing filter

and found its weight function h(t) [see (4.13)]. From h(t) and the

formula (3.44) for computing the weights of the approximating

digital filter, we found the weights h [see(4.15)] which are used in
n

the basic formula of digital filtering,

N

hn% fm = n _

n=-N

Where the gj are the input data values and the fj are the smoothed

output values. A simple but detailed example of an application is

given in Chapter VII.

A Martin-Graham band-pass smoothing filter is easily obtained

from the smoothing case and the discussion of section 4.7.

In this chapter, we shall derive the weights for some other

Martin-Graham filters. When referring to :a set of data _ gm_

we assume that the data arises from a function g(t) such that

l) g(t) = g(t) + p(t), where p(t) is a polynomial in t,

2) _(t) satisfies conditions I -III of section 4.1,

B) gm = g(_)__ where fs is greater than twice the highest
S

frequency in _(t).

(3.45)
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a

Let gM be the first data value and g_be the last. If p(t) is not

identically zero for M M_-<_t _<_--, then, in order to pass p(t) or
S S

differentiate it, constraints are necessary. Those for smoothing are

in section 4.6. A general procedure is given in appendix A for the

derivative cases, and the constraints for passing the first deriva-

tive of p(t) will be given in the next section.

5.2 Smoothing and first derivative filter

We have shown that the transfer function of a filter which will

smooth and find the first derivative to be

_(w) = iwHCw)

where H(w) is any smoothing filter transfer function [Put n=l and

w = 2_f in (4.2)]. Note that _(w) inherits the cut-off, w , and
C

termination, WT, frequencies fram H(w).

Putting n=l in (4.3b), we obtain the weights of this filter in

terms of the smoothing weights

1 %
yk=_f wS dk (5.1)

where h(t) < > H(w) and hk = 3.. h(_)f
S S

The _Lrtin-Gr_ham smoothing filter weights given by (4.15) in
w f

terms of the frequency ratio, r = 2_--f--= f--' are
S s

cos k_r d sin k_(2rc+r d)

k_(l-4rd_2)

sin 2_r_ + sin 2_rck

= __k2 ) '2_k(1-4r

_f fc fT

rd = _--,rc = _-- , rw f
s S S
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Then

1
Yk = "fs

r_ cos 2_r,k + r cos 2_r k
T T C C hk( 1-12rd2k 2)

k(1-4rd_)

rT cos 2_trTk + r cos 2_r k -_(1-12rd_2)
= _f c c • (5.2)

s
k(1-4r2k 2)

1 1 1
Note that Y-k = "Yk' and by applying L'Hospital's rule, Y0 = 0.

In a manner analogous to that of section 4.6, we find that in

order to pass exactly the derivative of P(t) of degree p the following

conditions must be satisfied by the approximating filter transfer

funct ion

N

Zl wn(w) = 2i Yn sin _--.

n=l s

(5.3)

(i) Y_(0)= o

i I_yN(w)

(2) _ _=_i

dPY_(w)

(3) = 0 for p > 1.
_2

Since
_2

cally satisfied for even integers p > O.

of degree 2, we need to satisfy only (2).
_i
Yk are given by

1 1 kQ1

_k=Yk +% ,

1 1

_k = -Y-k'

dP_(w)
is odd for all even p >_O, (i) and (3) are automati-

In particular, if p(t) is

The constrained weights

k>l, (5.4)
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where

N
f

_ s _ 1
Q1 2 A_ _Yn

n=l

N

% =_n2 •
n=l

(See [ii] for the derivation for p=4 from which the case p=2 follows

easilY. )

The constrained transfer function is

_N(W) = 2i _n sin wn • (5-5)
fs

n=l

In order to smooth and differentiate a set of data i{_ where the

polynomial content is of degree 2 or less, put hn=Y--n in (3.45).

This gives

^
If we let,h k = f

S

N

Z l_m= % gm+n "

n=-N

i
i

, then Ayl _ Yk A1 Y--k
_ - _- _na_ : _--.

S S

Then

(5.6)

N

i V A1 wn
_(,_1=2ifs_ % sinfs

11--1

(5.7)

and

N

Z_m =f % gin+n"S

n=-N

(5.8)
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q a

^i A 1

using _-n--"Yn' we have

N
r-_ AI

fm= f /_ Yn [gm+n "gm-n ]" (5.9)S

n=l

Writing

_(w) iwH(w)wH(w)e2

we see that _(w) has a phase shift of 90 °.• wH(w) is shown in figure

5.1 for the Martin-Graham smoothing and first derivative filter.

lwH(w)i

---- W

w w T"WT -Wc c
Figure 5.1.

Other first derivative filters with different roll-offs have

been examined and it was found that the Martin-Graham filter yielded

the same or a more accurate result.

In an attempt to avoid the lengthy computation of (5.1) for

yl, a "three-point derivative" of the smoothing weightsthe weights

has been examined. Let

_+l -_-z (5.lO)
Ok= 2 "

f
S

With H(f) the transform of the weight function h(t) from which the

are computed, we have

f

%- tN+l-N.11

80



= -- -k+l
1 [h(_) -h (-7--)]2

s s

f

_s -2_i(k+l)_-2

= _ HCf) [e
-f

s

2

-2_i(k-l)f
s]-e d.f

f8

1 f H(f)e S[e s s]d f= _ -e

-f
s

2

--_ 2_ -2_
s s

= f [e -e ][-iH(f)e S]df2i

-f
s

2

f
s f

j1 s [(2_if)H(f)]e sdf.

-f
B s

2

The actual weights are

f

__s -2_:J.k._2

1 1 f s

-f
s

2

Comparing (5.11) and (5.12), we see that if we define a weight

_k = "Sk' then the transfer function of the Yk is

(5.11)

(5.z2)
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sin 2_-
s (2_if)H(f)

S

which is the product of the desired transfer function and

sin 2x_
S

S

NOw

S

f
S

-_ sin 2_ff-- -2_ik_

f (2_If)H(f)[I- Sle s
.f 2_ff--

S S

2

df

and

for Iff---Ismall.
S

sin 2_-

i s *_0

f
S

If the cut-off f is small, then H(f) in the above
C

f

integral becomes zero for _- relatively small.
S

Then the Yk are

i

good approximations of the Yk" It has been found empirically that

fc

for filters such that -_-<_ .1, the _k give an acceptable output.
S

5.3 Band-pass smoothin6 and first derivative filter

We have shown that the transfer function of a band-pass filter

which will smooth and find the first derivative to be

BI(w) = iwB(w)
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where B(w) is any band-pass smoothing filter transfer function

[put n=l and w=2_f in (4.63)]. Note that Bl(w) has the same cutoff

and termination frequencies as B(w). B(w) may be designed by either

of the methods discussed in section 4.7.

Putting n=l in (4.65), we obtain the weights of this filter

in terms of the band-pass smoothing weights

%

where b(t) <----->B(w) and bk = i_ b(_)f "
g S

If the bk are obtained by taking the difference [see (4.57)]

of the weights of two low pass filters, say _ and _, then

bl= __f __d_ d_) . (5.13)S

When the bk are obtained by the second method [see (4.62)],

we have

bl= .2fs _ cos 2k_ (5.14)

°,sin 2k_ + os ?_kx
= -2fs q fs s

= 4_hkfoSin 2k_ -2f s os
S S

To obtain a Martin-Graham filter of this type by the first method,

we simply select two Martin-Graham smoothing filters with transfer-

weight functions h'(t) <----->H'(w) and h"(t) <----> H"(w) and compute

weights b_I_by (5.13). To use the second method, the appropriatethe
I%
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Martin-Graham filter with h(t) _ H(w) is selected and the weights
1

bk are computedby (5.14). Theseweights are used for the _ in
(3.45). Note that a factor of f can be removedfrom the sum(3.45)

S

in a manner analogous to the first deriw_tive case [see (5.7) and

(5.8)].

'K'Cw), "(w)
t

I

i

ia) Smoothing transfer functions

I !

b) _d-pass. _"(w) - H'Cw)

"T

c) Derivative transfer functions
derived from H' and H".

l ! I _ l

(d) Band-pass derivative:

f_Cw) - MiCw)

Fi_e5.2.

5.4 Smoothin 6 and second derivative filter.

Letting n=2 and w=2_f in (4.2), we find that the transfer

function of a filter which will smooth and find the second derivative

is

_(w) = -w_(w) (5.15)

8_



where H(w) is any smoothing filter transfer function.

Putting n=2 in (4.3b), we find that the weights of the filter
in terms of the smoothing weights are

2
Y_= s _--_

where h(t) <------>H(w) and hk --i h(__k)f
S S

(5.16)

Using the Martin-Graham smoothing weights given by (4.15) in

w f and (5.16) givesterms of r = 2_--f-= f--
S s

I

2 _ C24r2__ _{ 2 2 2= s _ 1-12r_k )-2_(r T sin
Yk k(l_4rd2] 2) s 2"rTk

+r2c sin 2_rck )]

1
where Yk is given by equation (5.2).

For k--O, using L'Hospital's rule gives

(5.17)

8 4_2 3 3)_2 : _ (rT+rc) _ _rT+rc
YO S "

This gives the weights to be used in the formula (3.45).

a factor of _ may be removed in this case.
s

A constraint is developed in appendix A to improve the fit of

the approximating transfer function at some specific frequency

ratio _.

(5.18)

Note that
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CHAPTER VI

INTEGRAT ION

6. i The Romberg technique.

One approach to the problem of integrating a set of numerical

data is to smooth the input data and then apply one of the standard

numerical integration techniques. A recently developed technique

which seems to be well suited to the smoothed output of a filter is

the one developed by Romberg (see appendix B). If

a+2kAt

I f(s)ds

where f(s) is knc_rn at the 2k+l points: a,a+j Gt, j=l,2, ...,2 k

1
&t = _-, then we aporoximate I by the diagon:_l element in the

S

kth r_¢ of the Romberg array, i.e.,

(6.1)

I 2kmtTk,O• (6.2)

6.2 Inte6ratin _ filters.

Another approach to the problem more in keeping with the one of

this report is to design a filter which will simultaneously smooth

and either give the indefinite integral or a definite integral of

the input function.

Let Ae 2_ift be a component of an input to a filter. Assuming

that the constant of integration is zero, the indefinite integral

of this component is (2_if)'lAe 2_ift. If this is to be the output

of the filter, then, using (3.5), we find that the transfer function

must be

x(f) = (2_if) -1 (6.3)
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Letting k'(t) = g(t) and assuming that the constant of integration is

zero and that k(t) satisfies conditions sufficient for the Fourier

integral theorem to hold, we have

k(t) _ (2_if)-lG(f) (6.4)

where g(t) _ G(f).

If we also smooth, we have

kCt) _ (2_if)-_(f)G(f) (6.5)

where H(f) is the smoothing filter transfer function. Then the

transfer function of a filter which will simultaneously smooth and

give the indefinite integral is

y(-1)(f) = (2_if)-lH(f). (6.6)

Note that the smoothed output, g(t), of the smoothing filter is the

inverse transform of H(f) G(f) and that

_(t) = fg((_) d_. (6.7)

For the transfer functions, H.(f), j=l,2, .--,5, of the smoothing

filters discussed in Chapter IV, yI-1)(f) has an infinite discontinuity

at f=O. Hence, in order to approximate y(-1)(f) with a truncated

Fourier series, we must modify y(-l)(f) on an interval containing zero.

To avoid some integrals which cannot be evaluated in closed form, we

shall consider only the case j=l,

Let ZXf > 0 and

y(-l)(f): (2 i)-i

f-1

fT-f

far
C

0

i.e., an Ormsby type filter.

Ifl < Af ,

Af_<f<_f c ,

(6.8)

Zc<Z<_f ,
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and y(-l)(_f) = .y(-1)Cf) for f < O. See figure 6.2.

f_

Zkf Figure 6.2. fc fT

_f

f Af
The weights in terms of the frequency ratio r = --_--'rd = --_-'

s S
f fT

r e = _-.-_, r T = _--, are
s S

I cos 2n_r d sin 2n_ry(n"I) ! d

- 2_2rdfs n 2_rdn2

rd cos 2n_r (sin 2n_r T - sin 2n_r )
c + c

rn 2
c 2_r n

e

- 2_r d [Si (2n_rc) - Si(2n_rd)] ) ,

where

_ (i)k+ix(_-i)si(x)= si_E2y_ : (_-i)!(2k-i)"
0 k=l

Define Y(-l_-O'o Also, Y(k I)= _y(-l)

A definite integral

From (6.7) we have

k(t+a) - _(t-a)

t+a

t-a

(6.9)
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and by (6.5) and the shift theorem,

k(t+a) - k(t-a) C > (2_if)'iG(f)H(f)[e 2_iaf -e-2_iaf]

or

k(t+a) k(t a) " "m m _ sin 2_af H(f)G(f) (6.10)
_f

Thus, if H(f) is a smoothing filter transfer function, the transfer

function of a filter which will simultaneously smooth and give the

integral of the input over [t-a,t+a] is

y(-1)(f) = sin 2_afll(f_ (6.11)
_f , ,.

Let

then

x(t)

m

1

0

Itl< a

Itl>a,

(6.12)

x(t) _ X(f) - sin 2_af
_f

Applying the convolution theorem gives

cO

y(-1)(t ) = /coh(Z)x(t-z)dz.

(6.13)

t+a

: (6.14)

a

= /am h(t-z)dz

where y('l)(t) _ y(-1)(f) and h(t) > H(f).
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By (3.44), the weights are

-n

f
s

f
s

-n
w oa

f
s

(6.!5)

Choosing hi(t), the Ormsby smoothing filter weight function, we have

Y('l)(t) - r_kflit(sin 2_fct sin _(2_ft2-a2)ca-sin2_fTt sin 2_fTa)

+
a(cos 2_fct cos 2_fca - cos 2_fTt cos 2_fTa)

(6.16)

- fc[Si(2_fc[t+a]) - Si(2_fc[t-a])]

+ fT[Si(2_fT[t+a]) - Si(2_fT[t-a])]_ •

. 3
f b

Using the frequency ratio r = _-, letting a = _--, and computing
s s

the weights by (3.44), we have

Y(n"l) - 2 1 _n(sin 2rmr c
rdf s (n2-b 2 )

sin 2_rcb - sin 2n_r T sin 2_rTb)

+
b( cos 2nxr cos 2_r b - cos 2n_r T cos 2_rTb )c c

(n2-b 2 )

- _rc[Si(2_rc[n+b]) - Si(2_rc[n-b])]

+ _rT[Si(2_rT[n+b]) - Si(2_rT[n-b])] } •
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CHAFFER VII

APPLICAT IONS

7.1 Editin 6 an___ddetermination of digital filter parameters.

In order to apply a digital filter to a set of data {gin}

we assume that the data values are obtained by taking equally spaced

samples of a function g(t) which satisfies the three conditions of

section 5.1o A variety of problems may arise from the methods used

to obtain the samples, and editin5 may be necessary. Common problems

are missing values and "bad" values, i.e., values grossly in error.

Since these can affect the output considerably, it is important to

replace them in some manner. The common practice is to consider the

"bad" values as missing values and then replace each missing value

by linear interpolation between the nearest data values on each

side of the missing value. (See [7])-

Next, the following parameters must be determined:

A. The largest frequency, f(_,which is present in the data.

This is commonly found by visually determining the shortest

period in the data,

B. The sampling frequency, fs' which must be at least 2fG.

C. The cut-off frequency, fc' which is chosen to be at least

as great as the highest frequency of interest present in

the data.

D. The termination frequency, fT" This should be chosen such

that either, (i) no frequencies present in the data are in

the interval (fc,fT) or, (2) frequencies appearing in (fc'fT)

have no significant amplitude.

E. The value of N and hence the number of weights, 2N+I, of the

filter.
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From the above, the corresponding frequency ratios may be found

f f fTc Z_f

from r = _-. That is, rc = _-' rT = _-' rd = _- "
S S S S

7.2 _-pirical error bounds for Martin-Graham filters

Empirical error bounds are found by recovering the digital

filter's transfer function, i.e., computing

f,

N 2n_if-A

zJ) = hne s,
n---N

j=l,2, ...,k, for various values of the parameters of section 7.1.

The recovered values are then compared with the designed or ideal

transfer function values at the fj. An expression for the error c

is then determined in terms of N and the other parameters.

The following error bounds were obtained by transfer function

recoveries and comparison with bounds obtained by the method of

section 4.5-

I. Martin-Graham smoothing filter.

For a maximum error ¢ [see (3.47)] of about .O1, take

N > 1.2____5 1.25f= s (7.1)

- r d Z_f

This gives a maximum error of 1% (c referred to unity) between

the act_l transfer function and the designed transfer function.

Note that the error does not change with rc, rd held constant.

The bound given by the method of section 4.5 was compared

with the results of computation with r values ranging from
C

•025 to .2, rd values ranging from .O21 to .11, and N values up

to 100. It was found to be about 5 times too large. Hence, in

terms of the frequency ratio,

4_rd 2 (7.2)

"i--log
¢ = 5_ 4N_rd -i

where "log" denotes the natural logarithm.
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II. Martin-Graham first derivative filter.

of recoveries for f _ fT' i.e., where yl(f)Comparison

is ideally zero, and the bound obtained by the method of section

4.5 yielded, over the same range of frequencies ratio and N

values given above, the expression

f 4_rJ 2

¢' "-_ [(rc+rT) log +

4_rJ-1 _N(4_rJ-1)

] • (7.3)

III. Martin-Graham second derivative filter.

As above, the following expression was found

2 4_rJ
_,. • fs r r 2 2,

= -_--L_rc+rT# log 4_rJ-1

rc+r T
+ _.---_--2 ]"

N(4NTr d -1)

(7.4)

IV. Martin-Graham band-pass filters.

The error can be as much as the sum of the errors in the

low-pass filters from which the band-pass filter is derived (see

section 4.7). Hence, in band-pass smoothing the error may be

twice that obtained with a low-pass smoothing filter having the

same roll-off length Z_f.

The values of e' given by (7-3) become too large for small rd,

but are still useable for rd=.O21. The values of ¢" given by (7.4)

are too small for large rd and small rc. The actual value may be as
4 E"

much as _ for rd values from .07 to .ll and rc values of .025 to

.07. However, it is still useable. ¢' and c" are values for the error

on the rejection band Ifl Ef T (Ir I _ rT). The error on the pass-band

Ifl _ fc (Irl _ rc) is essentially the same. For the first derivative

ideally is 2_f = 2_f r For an errorfilter, the amplitude at fc c s c"

of l°/@of 2_fc, we need
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¢' = .01(2_fsr c)

= (.02)_r f
c s

f

= (.08)(_rc) _ •

Comparing with (7.3), we see that N must be taken such that

4_rd 2 2
e

(.08)_r c = (rc+r T) log + • (7-5)

4_rd2-1 .N(4_rJ-1)

For the second derivative, the amplitude at f ideally is 4_2f 2=
C C

492f 2 2r • Similar to the above, we find that for an error of l@_
S C

of 4_2f 2, we need to take N such that
C

4N2rd 2 rc+r T

2 = _(r 2+rT2) log N(4_rd2_l)( "08)_2rc " c ._rd2.1 + • (7.6)

7.3 Pro6Tams 'and examples for Martin-Graham filters

When the appropriate filter has been chosen, the data edited,

and the parameters of section 7.1 determined, the filtering can

be performed. The weights, hn, of the filter are computed from the

weight function h(t) and (3.44). If the data has a polynomial

content, constrained weights hn are computed from the hn(see

section 4.6, section 5.2, and appendix A). Then the output is

computed using (3.45).

Consider the following examples. We take as the input the

function

g(t) = AlCOS 2_flt + A2sin 2_f2t

+ A3cos 2_f3t + A4-
(7.7)
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Using the Martin-Graham filters, we perform the operations of smoothing;

smoothing and finding the first derivative; and smoothing and finding

the second derivative. The sampled version of g(t) is

n

gn = g(_) = AlC°S 2_ fl + A2sin 2_-f2
S S S

+ A3co s n + A4, (7.8)
s 3

f
a_d going to the frequency ratio, r = _-, gives

S

gn = AlC°S 2_nrl + A2sin 2_nr2 + A3c°s 2_nr 3 + A_. (7.R)

The following PDQ FORTRAN program was run on the I_4 1620. It is

sectioned by comment cards which state what each part of the program

does. Table 7.1 gives the frequencies used for the various runs. Table

7.2 gives the frequency ratios, coefficients of the input and desired

outputs, the corresponding program symbols, and the values of these

parameters for each run. The value of N used, and hence the number of

weights for each run, is given by the last two digits in the run num-

ber. That is, Run 2.20 reads, "Run 2 with N = 20".

The following symbolism was selected:

FS: The sampling frequency, fs"

HO: The central smoothing weight, h •
o

DDHO: The central smoothing and second derivative weight.

H(1): The smoothing weights hi, I _ O.

DH(I): The smoothing and first derivative weights.

DDH(I) : The smoothing and second derivative weights,

I_O.

TFl: The recovered transfer function for smoothing.

TF2: The recovered transfer function for smoothing and

the first derivative divided by 2_.

TF3: The recovered transfer function for smoothing and

the second derivative divided by 4_2.

Z(I): The input samples gn' n = I-N-1.

Zl(I) : The input samples on the range of interest.

Z2(I) : The desired smoothed output.
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oz(I):

.,_k J. ,/ •

Sl:

$2:

S3:

The desired smoothed and first derivative

output.

output.

The actual smoothed output.

The actual smoothed and first derivative output.

The actual smoothed and second derivative output.

The following weight properties are used in the program:

i)

2)

Smeothing: h.n = hn'

Smoothing and first derivative:

3) Smoothing and second derivative:

i i
Y-n = "Yn

2 2
Y-n = Yn "

4) Smoothing and integrating: y(nl): _y(-l)

The results for each run follow the program.

In Run 2.20, the error ¢ in the transfer function is about .011.

At t = .8, the actual output differs from the desired output by .037.

Referred to the desired output, this is an error of about 2%.
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C C WEIGHTS, RECOVERY, FILTERING OF DATA, PDQ FORTRAN

DIMENSION A(30), H(30), DH(30), DDH(30), Z(101)

DIMENSION Z1(40), Z2(40), DDZ(40), DZ(40)
P=3,14159

READ I,XNI,TC,TD

1 FORMAT (3F10.0)

READ 5,T1,T2,T3,FS

5 FORMAT (4F10.0)

READ 14,AItA2,A3,A4

14 FORMAT (4F10.0)

READ 18,B1,B2,B3,B4

18 FORMAT (4F10.0)

NI=XN1

C C UNCONSTRAINED WEIGHTS

HO=2.*TC+TD

RT=TC+TD

DDHO=TD*TDW(RT+TC)/(PwP*P)-(RT*RT*RT+TC*TC*TC)/(6.wP)

DDHO=8o*P*P*P*DDHO

DO 2 I=I,N1
X=I

A(II=SINF(HO*X*P)/(X*P)

H(1)=A(1)*COSF(TD*XWP)/(lo-4.*TD*TD*X*X)

DH(1)=RTwCOSF(RTWX*2.*P)+TC*COSF(TC*X*2.*P)

DH(I)=DH(I)-H(1)*(I.-12.*TD*TD_X*X)

DH(I)=DH(1)/(X*(I.-4.WTD*TD*X*X))

DDH(1)=-2.*DH(1)w(1.-12**TD*TD*X*X)+24.*TD*TD*X*H(1)

DDH(1)=DDH(I)-2.*P*TC*TC*SINF(2.*TC*P*X)

DDH(I)=DDH(I)-2**P*RT*RT_SINF(2_*RT_P*X)

2 DDH(I)=DDH(1)/(X*(1.-4.*TD*TD*X*X))
N2=N1

C C CONSTRAINED SMOOTHING WEIGHTS

C

SI=O

DO 3 I=I,N2

3 SI=SI+H(I)
FNI:2*NI+I

$I:1.-(H0+2.*$1)

SI=S1/FNI

DO 4 I=I,N1

4 H(1)=H(1)+S1

HO:HO+SI

C TRANSFER FUNCTION RECOVERY
ZI=IOO,*TC-1,
Z2=Z1+6,

Z3=Z2+IOO,*TD
Z4:Z3+6.

DO 13 K=1,57

TFI=O

TF2=O

TF3=O

X=K

IF(X-ZI) 6,66,66

6 Y=K-1

Y:.OI*Y

GO TO 10

66 IF(X-Z2) 7_77,77

7 Y:Y+.O05

GO TO 10

77 IF(X-Z3) 8,88,88
8 Y=Y+.01

GO TO i0
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88 IF(X-Z4) 9,99,99
9 Y=Y+.O05

GO TO i0

99 Y:Y+.OI

i0 CONTINUE

DO ii I=I,N2

X:l

TFI=TFI+2.*H(1)*COSF(2.*X*P_Y)

TF2=TF2+2.*DH(1)*SINF(2.*X_P*Y)

11 TF3=TF3+2._DDH(1)*COSF(2,*XwP *Y)

TFI=HO+TF1

TF2=-FS*TF2/(2.*P)

TF3=DDHO+TF3

TF3=FS*FS*TF3/(4.*P*P)

YI=Y*FS

PUNCH 12,YItTF1,TF2,TF3

12 FORMAT (E7.3, 3E15°8)

13 CONTINUE

C C INPUT DATA

P2=P_P

M1=N1+I

M=2WNI+40

DO 15 I=l,M

T=I-M1

CI=COSF(2._P_TI_T)

S=SINF(2._P_T2_T)

C3=COSF(2.*P_T3_T)

15 Z(1)=AIWCI+A2_S+AS_C3+A4

C C INPUT DATA ON THE RANGE OF INTEREST

DO 17 I=1,40

T=I-1

CI=COSF(2._P_TIwT)

S=SINF(2._PWT2_T)

C3=COSF(2._P_T3_T)

ZI(1)=AI_CI+A2_S+A3_C3+A4

Y=I/FS

PUNCH 16,Y,Z1(1)

16 FORMAT (E7,3, E15.8)

17 CONTINUE

C C DESIRED OUTPUTS

DO 20 I=1,40

T=I-1

CI=COSF(2°_P_TI_T)

S=SINF(2°_P_T2WT)

C3=COSF(2._P_T3_T)

Z2(1)=BI_CI+B2_S+B3_C3+_4

DDZ(I}=-4._P2WFS_FSW(BI_TI_TI_CI+B2_T2_T2_S+B3_T3_T3wC3)

CI=SINF(2o_P_TI_T)

S=COSF(2.wPwT2wT)

C3=51NF(2°_P_T3_T)

DZ(1)=-2°_P_FS_(BIwTIwC1-82_T2_S+B3wT3wC3)
Y=T/FS

PUNCH 19,Y,Z2(1),DZ(1),DDZ(1)

19 FORMAT (E7°3, 3E15,8)

2O CONTINUE

C C ACTUAL OUTPUTS

DO 23 K=I,40

M2=K-1

M3=NI+I

$1=0
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b

21

22

23

$2:0

$3:O

T:M2

T=T/FS

DO 21 I=I,NI

KI=M3-1

K2:I+M2

K3:M3+I+M2

SI=SI+H(K1)*Z (K2)+H( I )*Z (K3)

S2=S2-DH(KI )*Z(K2 )+DH( I )*Z( K3 )

S3=S3+DDH (K I )*Z(K2 )+DDH (I )*Z(K3)

K4=M3+M2

S I=HO*Z ( K4 ) +$1

S2=-FS*S2

S3:DDHO*Z (K4)+$3

$3:FSwFS*S3

PUNCH 22tTjSI,S2_S3

FORMAT (E7,3, 3E15,8)

CONTINUE

STOP

END

TABLE 7.1

FREQUENCIES

FREQ. RUN 1.20 RUN 2.20 RUN 3.20 RUN 4.30

£i .5 .5 .5 .5

£2 .9 .95 2.0 2.0

£3 2.0 1.9 4,0 4.0

£ i0.0 i0.0 I0.0 i0.0
S

f 1.0 1.0 2.0 2.0
O

Z_ .6 .6 .6 .6

£_ 1,6 1,6 2,6 2.6
.Jr
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TABLE 7.2

PROGRAM SYMBOLS AND PARAMETER VALUES

FREQ. PROGRAM PARAMETER VALUES

RATIO SYMBOLS RUN 1,20 RUN 2.20 RUN B,20 RUN 4.30

r TC .i .I ,2 .2
c

r T RT .16 .16 ,26 ,26

r d TD .06 ,06 .06 .06

r I T1 .05 .05 ,05 ,05

r 2 T2 .09 ,095 ,2 .2

r 3 T3 .2 .19 .4 .4

COEFFICIENTS*

A 1

A2

A3

A4

A1 1,0 1,0 1.0 1.0

A2 1,0 2,0 2,0 2,0

AB .5 1.5 1,5 1,5

A4 .5 1,0 1.0 1,0

BI 1.0 1.0 1,0 1,0

B2 1.0 2.0 2,0 2.0

B3 0.0 0,0 0.0 0,0

B4 .5 1,0 1,0 1,0

*The coefficients BI, B2, B3, and B4 are for the desired output.
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Run 1.20. Recovered transfer functions.

f
•O00E-50
,IOOE O0
• 200E O0

,300E O0
• 400E O0
• 500E O0
• 600E O0

• 700E O0

o750E O0

• 800E O0
,850E O0

,900E O0

•950E O0

,IOOE Ol

,110E 01

,120E Ol
• 130E 01
• 140E 01

• I50E 01

,160E 01
• 165E 01
• 170E 01

• 175E O1
• 180E 01
• 185E 01

i190E 01

,200E 01
• 210E 01

,220E 01
,230E 01

• 240E 01
• 250E Ol

• 260E 01
• 270E 01

,280E 01
• 290E 01
• 300E 01

• 310E 01

• 320E Ol

• 330E 01
• 340E 01

• 350E 01
• 360E 01

• 370E 01
• 380E 01

• 390E 01
• 400E 01
• _IOE O1

• 420E 01

,430E Ol

• 440E 01

• 450E 01
,460E 01

•470E 01

,_80E Ol
• 490E O1

.500E 01

TF1

• IO000000E Ol
.99797082E O0

• 99514616E O0
,99689773E O0
,10028117E 01

• 10056242E 01
,10002252E 01

,99285677E O0
,99266489E O0

,99624218E O0
.10028210E 01

.10095384E 01
,I0114761E Ol

• I0023041E Ol

.92563225E O0

.75029065E O0

.50077482E O0

• 2500291_E O0

•72924460E-01

-•32426400E-02

-, 11377890E-01

TF2

-•O0000000E-50

• I0644201E O0

,20274402E O0

.29448908E O0

,39483205E O0

.50387711E O0

,60704498E O0

•69780276E O0

,74289948E O0

,79162209E O0

.84539667E O0

•90275637E O0

•95858893E O0

• I0044468E Ol

,I0252742E Ol

,90216597E O0

.64488536E O0

• 34476281E O0

. I1260134E O0

, 19521540E-02

-. 13822814E-01

-,84137400E-02 -,13541+579E-01

-,I1392600E-02 -,5759352!E-02

,52603800E-02

.79699400E-02
,65757700E-02

-,21774900E-02

-,58878800£-02

-.58409000E-03

•46315200E-02

.26071700E-02

-.27621400E-02

-•36315500E-02

,64339000E-03

.35876200E-02

.12612300E-02

-,26257000E-02

-,25406600E-02

,I0930100E-02

•29542400E-02

.55387000E-03

-•24929200E-02

-•18729000E-02

,13618800E-02

•25360100E-02

•76130000E-04

-,24060800E-02

-,13945100E-02

•15722800E-02

.22277100E-02

-•30863000E-03

-,23597500E-02

-•I0061100E-02

,17721900£-02

•19841000E-02

-.65485000E-03

-•23433100E-02

.26600947E-02

,76060798E-02

,78909192E-02

-•37392119E-04

-.52531985E-02

-.16588389E-02

.32130305E-02

•24427648E-02

-.14786985E-02

-•24903026E-02

•12064591E-05

•20251410E-02

,77131372E-03

-,13044897E-02

-•I1997365E-02

•5405767_E-03

•12258077E-02

,96642464E-04

-•96748445E-03

-,49995495E-03

,58565360E-03

•66474301E-03

-•20482956E-03

-•6355784aE-03

-•90762957E-04

,48410550E-03

,25444567E-03

-,30625590E-03

-.3105145aE-03

,15942691E-03

,30706919E-03

-.58141577E-04

-,28422375E-03

-,19021419E-07

TF3
-,13118759E-02

-•I0946376E-01

-,39351767E-01

-,87443287E-01

-•15869925E O0

-,25324265E O0

-•36411447E O0

-•48710996E O0

-•55597912E O0

-,63277556E O0

-•71897448E O0

-,81362836E O0

-•91209207E O0

-,I005559!E Ol

-,I1271631E Ol

-,I0811058g Ol

-.83823027E O0

-,48412609E O0

-,16974264E O0

-•20212799E-02

•24411391E-01

,24458559E-01

,I0725431E-01

-•52313811E-02

-,15449837E-01

-,16755633E-01

-•40204820E-03

,12614394E-01

,49615192E-02

-•83732144E-02

-•77437910E-02

•37839675E-02

,85511753E-02

,70627570E-03

-•73173091E-02

-.42105583E-02

•46011116E-02

•61619848E-02

-•I1957794E-02

-•64062478E-02

-•21880954E-02

•49185261E-02

,46417541E-02

-•22487438E-02

-,55934707E-02

-.74151273E-03

•50422546E-02

•34035565E-02

-,3i03ou7_E-_._

-•49991779E-02

•33611586£-03

•50543043E-02

•23483579£-02

-,37513775E-02

-.43462630E-02

,14058413E-02

.51270527E-02
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Run l.RO. Input over the range of interest.

t

,IOOE O0
,200E O0
,300E O0

,400E O0
,500E O0

,600E O0

z1(t)
,20000000E Oi

,21413919£ Ol

,18093361E Ol

,1675391_E Ol

, 17340388E Ol

,13090206E Ol

,96808960E-01

,700E O0 -,12212563E Ol

,800E O0 -,16958132E Ol

,900E O0 -,12263299E Ol

,IOOE Ol -,58778910E O0

,llOE Ol -,35933910E O0

,120£ Ol -,23177_96E O0

.I30E Ol

,140E Ol

,150E Ol

,160E Ol

,170E 0 1

,180E Ol

,190E Ol

,200E Ol

,210E 01
,220E 01
,230E Ol
,240E Ol

,250E 01
,260E 01

.38400309E O0

,13435080E Ol

,18090172E Ol

,13316611E Ol

,49590509E O0

,2199589h_E O0

,65697291E O0

,I0489406E Ol

,9681_547E O0

,77917473E O0

,II090#43E Ol

,18078412E Ol

,20000066E Ol

,I1898459E Ol

,270E Ol -,66488190E-01

,280E Ol -,83885020E O0

,290£ Ol -,93397380E O0

,300£ Ol -,95105200E O0

,310£ Ol -,12651218E Ol

,320E Ol -,15980790E Ol

,330E Ol -,67970750E O0

,3_OE O1 ,71357536E O0

,350E Ol ,18089978E Ol

,360E Ol ,19615601E Ol

,370E Ol ,15595957E Ol

,380E Ol ,13862599E Ol

,390£ Ol ,15427700E Ol
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Run 1.20.

t

,O00E-50

,IOOE O0

,200E O0

,300E O0

Desired outputs.

Smoothed is--_tDerivative 2 nd Derivative

Z2(t) DZ(t) DDZ(t)
,15000000E Ol ,56548620E Ol -,98695878E Ol

,19868829E Ol .38037554E Ol -,26520906E 02

,22138439E Ol ,56114911E O0 -,36918729E 02

.20799007E Ol -,32503322E Ol -,37526523E 02

,400E O0 ,15795324E Ol -,65923646E Ol -,27688979E 02

,500E O0 ,80902060E O0 -,85196792E 01 -,98816658E 01

,600E O0 -,57702570E-01 -,84650394E Ol

,700E O0 -,81675000E O0 -,64126361E Ol

,800E O0 -,12913022E 01 -,29062224E 01

,900E O0 -,13808338E 01 .11108591E 01

,IOOE Ol -,I0877891E Ol ,45748552E Ol

,110E 01 -,51385310E O0 ,66144971E 01

,120E 01 ,17272979E O0

,I30E Ol ,78851564E O0

,140E Ol ,I1890066E Ol

,150E Ol

,160E Ol

,170E Ol

,180E Ol

,190E 01

,200E 01

,210E 01

,220E 01

,230E 01

,240E 01

,250E 01

,260E 01

,270E 01

,280E Ol -,43433296E O0 -,74568799E Ol

,290E Ol -,I0884676E Ol -,53280230E Ol

,300E Ol -,14510520E Ol -,17475506E Ol

,310E Ol -,14196459E Ol .23770048£ Ol

,320E Ol -,99358050E O0 .59687149E Ol

,330E Ol -,27518875E O0 ,80962657E Ol

,340E Ol ,55908404E O0

,350£ Ol ,13089978E Ol

,360E Ol ,18070355E Ol

,370E Ol

,380E Ol

,390£ Ol

,II002238E 02

,29111678E 02

,39395685E 02

.59118474E 02

,28665593E 02

elIB94594E 02

,68019809E Ol -,74204176E Ol

.52658747E Ol -,22220744E 02

,26327922E Ol -,28864472E 02

,13090172E Ol -,18222171E O0 -,25870408£ 02

,I1771446E Ol -,22699080E Ol -,14821747E 02

,90040828E O0 -,30130995E Ol ,19056161E O0

,62447306E O0 -,22756563£ Ol ,13905253E 02

,48247401£ O0 -,43553584E O0 ,2!586242E 02

,54894060E O0 ,17474137E Ol ,20542883E 02

,81362656E O0 ,33863211E Ol ,i0996902E 02

,i1836763E Ol ,37656986E Ol -,39765130E Ol

,15135599E Ol .25751092E Ol -,19416283E 02

,16533449E Ol ,42256899E-01 -,30049203E 02

,15000066E Ol -,31415225E Ol -,31977530E 02

,I0353242E Ol -.60178027E Ol -,23949877E 02

,33801188E O0 -,76582527E Ol -,78145864E Ol

,I1992048E 02

,29769579£ 02

,40281818E 02

,40359512E 02

,29875160E 02

,I1793730E 02

,82456119£ Ol -,87212573E Ol

,64655110E Ol -,25869906E 02

,33430089E Ol -,34964i09E 02

,19640926E Ol -,18254309E O0 -,33829464E 02

.17907802E Ol -,31087390E Ol -,23390364E 02

,13882812E Ol -,46728742E Ol -,73792113E Ol
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Run 1.20. Actual outputs.

t

.O00E-50

• IOOE O0
• 200E O0

,300E O0
,400E O0
,500E O0

Smoothed istDerivative 2ndDerivative

Sl $2 $3

,15045354E 01 ,56721806E 01 -,I0031434E 02

,19970064E Ol ,38109615E Ol -,26747757E 02

,22279052E Ol ,55427308E O0 -,37171376E 02

.20935504E OI -.32722799E OI -,3776335IE 02

,15882834E Oi -,66266840E Oi -,27867256E 02

,8108794IE O0 -,85605104E Oi -,995976IIE Oi

,600E O0 -.62149062E-01 -.85048700E Ol
,?OOE O0 -,82612818E O0 -,64441304E Ol

,800E O0 -,13043409E 01 -,29238554E 01
,900E O0 -,13953876E Ol ,II095947E 01

,IOOE 01 -,11001086E Ol ,@5888662E 01
,IIOE Ol -,52013754E O0 ,66394216E Ol

,I20E Oi

,I30E OI

,I40E Oi

,I50E Oi

,I60E Oi

,I70E OI

,I80E Oi

,IgOE OI

,200E Oi

,2IOE Oi

,220E Oi

,230E Oi

,240E OI

,250E Oi

,260E Oi

,270E Oi

,280E Oi -,43919722E O0 -,74884514E Oi

,290E OI -,II002328E OI -,5349008IE OI

,300E Oi -,I4668365E Oi -°I7529024E Oi

,3IOE Oi -.14345700E Oi .23889526E OI

,320E Ol -,I003779IE Oi ,59957294E Oi

,330E Oi -,2794015IE O0 ,81329167E Oi

,340E Oi ,56052073E 00

,350E Oi ,I3156258E Oi

,360E Oi ,18179545E Oi

,370E OI

,380E Ol

.390E 01

,II049072E 02
,29271869E 02
,39620482E 02

,39345057E 02
,28843974E 02

,I1496990E 02

,17365562E O0 °68315450E Ol -,74053338E Ol
,79444918E O0 ,52938569E 01 -,22290500E 02
,11964518E 01 ,26547608E 01 -,28996224E 02

,1BI56452E 01 -,16804116E O0 -,26020127E 02
,11820574E 01 -,22627312E Ol -,1_942387E 02

,90280760E O0 -,30103346E 01 ,12268360E O0
,62337475E O0 -,22740332E 01 ,13880260E 02
,47824776E O0 -,43242794E O0 ,21574888E 02

,54440436E O0 ,17527655E Ol ,20517271E 02

,81255887E O0 ,3392250IE Oi ,I0938109E 02

,II879120E Oi ,37666320E OI -,_0816116E Oi

,I5218073E Oi ,25710047E OI -,I9571985E 02

,I6628000E Oi ,2825874IE-0I -,30238055E 02
.I508456_E OI -,31658828E OI -,32154616E 02

,I0_13034E Oi -,60501405E Oi -,2#05961IE 02

,33964794E O0 -,76935647E Ol -,78197993E Ol

,12094081E 02

,29954085E 02

.40512243E 02

,40591663E 02

,30057299E 02

,11876349E 02

,82847717E OI -,87627748E Oi

,65000505E OI -,26019624E 02

,33673742E OI -,35174977E 02

,19766374E Ol -,17111221E O0 -,34043700E 02

,18008065E Ol -,31096643E Ol -,23582420E 02

,13926950E Ol -,46827420E Ol -o75203155E Ol

See figures 7.1 and 7.2, pages 114 and 115.
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Run 2.20. Input on the range of interest.

t
,O00E-50
,IOOE O0
,200E O0

o300E O0
,400E O0
,500E O0
,600E O0

Zl(t)

,35000000E Ol

.36274107E Oi

.25751186E Oi

• 21823776E Ol

,27722949E Oi

•27394576E Ol

•79557440E O0

,700E O0 -,20318853E O1
,800E O0 -,32932433E O1

,900E O0 -°1904#190E O1
,IOOE Ol

,IlOE Ol

,120E Ol

,130E Ol

,140E Ol

,150E Ol

,160E 01

,170E 01

,59547310E O0

• 18734152E Ol

,14509463E Ol

,92990740E O0

• 16398419E Ol

o27896500E Ol

,25112433E Ol

o45319630E O0

,180E Ol -.14425950E Ol

,190E Ol -,I0865011E Ol

,200E Ol

,210E Ol

,220E Ol

,230E Ol

,240E Ol

,250E Ol

,260E 01

,270E 01

.12879099E Ol

.33852534E Ol

,35193545E Ol

•23964943E Ol

•I8789242E Ol

,24141995E Oi

•24604273E OI
,64480020E O0

,280E Ol -,21362846E Ol

,290E Ol -.34471109E Ol
,300E 01 -,20816204E 01
.310E Ol
o320E Ol
,330E Ol

,340E Ol
,350E Ol

e360E Ol

,370E 01

,380E Ol

• 52717530E O0
• 20028098E Ol
• 17244565E Ol
• 12223375E Ol

• 19002987E 01

• 30762402E Ol

•28730387E 01

,81532020E O0

,390E Ol -,12359836E Ol
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The transfer functions for Run2.20 are the same as for Run l.20.

The frequencies f2 and f3 were chosen such that they appear where the

transfer function has a relatively large error for each in smoothing.

Run 2.20. Desired outputs.

Smoothed Zst Derivative 2nd Derivative

t z2Ct) DZ(t) DDZCt)
,000E-50 ,20000000E 01 ,I1938042E 02 -,98695878E 01

,IOOE O0 ,30752225E Ol ,89029224E Ol -,49439679E 02

,200E O0 ,36685695E Ol ,25481186E Ol -,74239047E 02

,300E O0 ,35396201E Ol -,51457837E Ol -,75343517E 02

,400E O0 ,26781152E Ol -,I1690270E 02 -,51829733E 02

,500E O0 ,13128752E Ol -,14932650E 02 -,II147463E 02

,600E O0 -,16056850E O0 -,13789710E 02 ,33390021E 02

,700E O0 -,13092641E Ol -,86185972E Ol ,67136173E 02

,800E O0 -,18050697E Ol -,I0970380E Ol ,79102480E 02

,900E O0 -.15313713E Ol ,63460558E Ol ,65691925E 02

,lO0g Ol -,61804350g 00 ,I1353726E 02 ,31889993E 02

,IIOE Ol ,60691420E 00 ,12434841E 02 -,I0493541E 02
.120E 01 .17319999E 01 ,94562217F Ol -,46920600g 02

,130E Oi ,24033347E Ol ,36651402E Ol -,65140906E 02

.140E O1 .24435997E 01 -,27632956E Ol -,59394571E 02

,150E 01 ,19079905E Ol -,74952425E 01 -,32351089E 02

,160E Ol ,I0583625E Ol -,88560850E Ol ,58806474E Ol

,170E Ol ,26517030E O0 -,64133147E Ol ,41322436E 02
,180E Ol -,12814780E O0 -,11223806E 01 ,61034916E 02

,190E 01 ,69286900E-01 ,50145807E 01 ,57659391E 02
,200E 01 ,82441320E O0 ,96580243E 01 ,32015644E 02
,210E Ol ,18882153E Ol ,I0961359E 02 -°71475097E Ol
,220E Ol ,28806549E 01 ,82331297E 01 -,46166189E 02

,230E O1 ,34232900E Ol ,21997103E Ol -,71198657E 02
,240E Ol ,32736022E Ol -,52246427E Ol -,73046335E 02

,250E 01 ,24142373E 01 -,11582958E 02 -.50387988g 02

,260E 01 ,I0657772E 01 -,I@714394E 02 -,I0303582E 02

,270E 01 -,38205070E O0 -,13497869E 02 ,34100402E 02

,280E O1 -,14976535E O1 -.82434618E O1 .68149563E 02
,290E 01 -,19500681E 01 -,59601818E O0 ,80609807E 02

,300E O1 -,16180518E 01 ,70168343E 01 ,67519496E 02
,310E Ol -,62856450E O0 ,12202990E 02 ,33525547E 02
,320E Ol

,330E Ol

,340E Ol

,350E Ol

,360E Ol

,370E Ol
,380E Ol

,390E Oi

,68832620E O0 ,13409593E 02 -,97354072E Ol

,19124074E Ol ,I0436504E 02 -,47649667E 02
,26751995E O1 ,44842623E O1 -,67646423E 02

,2782019_E Ol -,22779851E Ol -,63492183E 02

,22725463E Ol -,74734449E Ol -,37379897E 02
,13995972E Ol -,93434638E Ol ,90358681E O0

,53419230g O0 -,73519577E Ol ,37436183E 02

•30476800E-0I -,23599962E Ol ,59042124E 02
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Run2.20. Actual outputs.

t

,O00E-50
,IOOE O0

,200E O0
,300E O0

.400E O0
,500E O0

Smoothed i st Derivative 2nd Derivative

SI S2 $3

,20154878E 01 ,12045973E 02 -,II041620E 02

,30971031_ Ol ,89155165E Ol -,50404191E 02

,36872694E Ol ,25__26223E O1 -,74375279E 02

,35564000S Oi -,51573711E Ol -,75311883E 02

,26961842E 01 -,I1717893E 02 -,52501832E 0Z

,13258467E 01 -,15040630E 02 -,12261396E 02

,600E O0 -,16579159E O0 -,13967839E 02

,700E O0 -,13370774E Ol -,87584182E Ol

,800E O0 -,18423126E Ol -,10952590£ Ol

,900E O0 -,15573091E Ol ,64767132E Ol

,IOOE Ol -,62278052E O0 ,I1500090E 02

,IIOE Ol

,120E Ol

,130E Ol

,140E Ol

,150E 01

,160E 01

,170E 01

,33067783E 02

,68289526E 02

,80894529E 02

,66607086E 02

,31397538E 02

,61629707E O0 ,12506166E 02 -,I1472647E 02

,17432870E Ol ,94662856E Ol -,47266475E 02

,24131902E Ol ,36810689E Ol -,64896809E 02

,24566893E Ol -,27293315E Ol -,59538814E 02

,19242084E Ol -,75068831E Ol -,33329921E 02

,I0667777E Ol -,89584918E Ol ,49231610E Ol

,25453440E O0 -,65483543E Ol ,41571858E 02

,180E Ol -,15447227E O0 -,I1707356E Ol
,190E Ol

,200E 01
,210E 01

,220E 01
,230E 01

,240E 01

,250E 01
,260E 01

,62482610E 02

.45440250E-01 .51060713E Ol ,58962975E 02

,81959411E O0 ,98160733E Ol ,31974414E 02

,19026873E Ol ,ii066381E 02 -,82875370E Ol

,29017031E Ol ,82426470E Ol -,47149863E 02

,34409083E Ol ,21686487E Ol -,71341566E 02

,32887141E Ol -,52406639E Ol -,72959075E 02

,24304671E Ol -,I1609264E 02 -,50975316E 02

,I0775115E Ol -,14816202E 02 -,I1380296E 02

,270E Ol -,38771926E O0 -,13670845E 02

,280E Ol -,15257821E Ol -,83829090E Ol

,290E Ol -,19882024E Ol -,59549004E O0

,300E Ol -,16452934E Ol ,71510027E Ol

,310E 01 -,63408873E O0 ,12359475E 02

,320E 01

,330E O1
,340E O1
,350E O1
,360E O1
,370E O1

,380E O1

,390E O1

.33745373E 02
,69263233E 02
,82427016E 02

,68515082E 02
,33087545E C2

,59812756E O0 ,13492625E 02 -,10741499E 02
,19250822E O1 ,10453800E 02 -.48069999E 02

,26866783E O1 ,45024557E O1 -,67448987E 02
,27966715E O1 -,22424527E O1 -.53635556E 02
,22906269E O1 -,74820601E O1 -,38367769E 02
• 14104324E O1 -.94_51399E O1 -.12686000E O0

,52596078E O0 -,74938559E O1 ,37577800E 02

,54566600E-02 -,24224347E O1 ,60_33601E 02
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Run 3.20. Recovered transfer functions.

f TFI TF'2

,O00E-50 ,IO000000E Ol -,O0000000E-50

,IOOE O0 ,99945238E O0 ,I076138BE O0

,200E O0 .99863960E O0 .20400454E O0

,300£ O0 ,99897643E O0 ,29440003E O0

,400E O0 ,I000508!E Ol ,39296;84£ O0

,500E O0 ,I0015378E Ol ,50204665E O0

,600E O0 ,I0006253E Ol ,60835788E O0

,700E O0 ,99870627E O0 ,70226832E O0

,800E O0 ,99833_IIE 00 ,79240672E O0

,900£ O0 ,i0003624E Ol ,89362575E O0

,lOOE Ol ,I0022588E Ol ,I0048168E Ol

,flOE Ol ,I0010699E Ol ,ii093631E Ol

,120E Ol ,99788668E O0 ,i1994607E Ol

,I30E Ol ,99730807E O0 ,12893453E Ol

,140E Ol ,I0010904E Ol ,13955016E Ol

,150E Ol ,I0042013E Ol ,15101747E Ol

,160£ Ol ,I0007927E Ol ,16095504E Ol

,170E Ol ,99441370£ O0 ,16912238E Ol

,175£ Ol ,99386400E O0 ,17347289E Ol

,180£ Ol ,99666469E O0 ,17859937£ Ol

,185£ Ol ,I0023570£ Ol ,18460814E Ol

,190E Ol ,I0084103E Ol ,19107547E Ol

,195£ Ol ,I0101403E Ol ,19697331£ Ol

,200E Ol ,i0012704E Ol ,20077460E Ol

,210E Ol ,92604993£ O0 ,19529443E Ol

,220E Ol ,75147569E O0 ,16525654E Ol

,2BOE Ol ,50108251E O0 ,i1436934E Ol

,240£ Ol ,249113BiE O0 ,59361745£ O0

,250E Ol ,72100960E-01 ,18685445E O0

,260£ Ol -,28700700E-02 ,61257277E-03

,265E Ol -,i0526310£-01 -,24190123E-01

,270E Ol -,74207000E-02 -,22251017E-01

,275E Ol -,38653000E-OB -,83783146E-02

,280E Ol ,54924300E-02 ,58506912E-02

,285E Ol ,76056200E-02 ,1375_990E-01

,290E Ol ,57678000E-02 ,19636174E-01

,300E Ol -,28776700E-02 -,57320315E-03

,310E Ol -,55256200E-02 -,94010325E-02

,320E Ol ,31000000E-03 -,29603702E-02

,330E Ol ,48150100E-02 ,56742181E-02

,340E Ol ,18449600E-02 ,45846017E-02

,350E Ol -,33996600E-02 -,22821846E-02

,360E Ol -,32646400E-02 -,_5695297E-02

,370E Ol ,14945900E-02 -,39263350E-03

,380E Ol ,37360000£-02 ,33800911E-02

,390E Ol ,49900000E-03 ,19979871E-02

,400E Ol -,32386200E-02 -,16358196E-02

,410E Ol -,21445300E-02 -,24325171E-02

,420E Ol ,19569700E-02 -,24102604E-04

,430E Ol ,30798600E-02 ,19017655E-02

,440E Ol -,25244000E-03 ,11191118£-02

,450E Ol -,31156400E-02 -,81849770£-03

,460E Ol -,14207000E-02 -,14057018E-02

,470E Ol ,22879500E-02 -,30348199E-03

,480E Ol ,26BB8200E-02 ,92689450E-03

,490E Ol -,8B840000E-O3 ,994B3503£-03

,500E Ol -,30766900£-02 ,48763747E-07

TF3

,86044627E-05

-,10389035£-01

-,41397524E-0i

-,89287873E-0!

-,15734707£ O0

-,25000005E O0

-,36397262E O0

-,49198182E O0

-,63544748E O0

-,80488189E O0

-,i0034423E Oi

-,I2186314E Oi

-,14398548E Oi

-,i678446iE Oi

-,i9546465E Oi

-,22632507E Oi

-,25729319E Ol

-,28758868E Oi

-,30381955E Oi

-,32179358E Oi

-,34178864E Oi

-,36314467E Ol

-,383984_8E Ol

-,40125424E Ol

-,40982205£ Ol

-,36371321£ Ol

-,26347093E Ol

-,14255807E Ol

-,46301103E O0
,18476202E-02

,64760126E-01

,57526921E-01

,18153645E-01

-,21730061E-01

-,42844089E-01

-,3989680BE-01

,74476768E-02

,32948817E-01

,54166142E-02

-,25297890E-01

-,14953360E-01

,15631655E-01

,20224603£-01

-,48185396E-02

-,20731159E-01
-,54942011E-02

,16611028E-01

,19303063£-01

-,91247478E-02

-,17237979£-01

.99852194E-04

,16751383E-01

,84910BB4E-02

-,12012786E-01

-,14552608E-01

,43299174E-02

,16693073E-01
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Run 3.20. Input over the range of interest.

t Zl(t)

,O00E-50 .35000000E Ol
.IOOE O0 .26396454E Ol
.200E 00 .34481107E Ol

,300E O0 ,87575520E O0

,400E O0 -,I8066307E Oi

,500E O0 ,24999908E Oi

,600E O0 ,I3795795E Oi

,?OOE O0 ,20513030E OI

,800E O0 -,52102270E O0

,900E O0 -,30667170E Oi

,IOOE Oi °I4999788E Oi

,IIOE Ol ,73754350E O0

,I20E OI ,I8300614E OI

,I30E Oi -,29977140E O0

,140E Ol -.242#6944E Ol

_ISOE Oi .24999642E Oi

,160E Oi ,19976199E Oi

IITOE Oi ,32268552E Oi

,I80E Oi ,I0970545E Oi

,IgOE Oi -,I1646317E Oi

,200E Oi e34999576E Oi

.210E Ol .26396713E Ol

.220E 01 .34480875E 01

.230E 01 .87585440E O0

.240E 01 -.18066762E 01

.250E 01 .24999536E 01

.260E 01 .13796088E 01

.2TOE 01 .20512811E 01

6280E Oi -.52092470E O0

e290E 01 -.30667660E 01
.300E 01 .14999363E 01
.310E 01 .73756630E O0

.320E 01 .18300321E 01
o330E 01 -.29968060E O0
.340E 01 -.24247501E Ol
.350E 01 .24999164E 01

e360E 01 .19976393E 01

,370E Ol ,32268247E Ol

o380E OI ,I0971464E Oi

,390E Ol -.II&_6838E Oi
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Run 3.20. Desired outputs.

t

oO00E-50
,IOOE O0

,200E O0
o300E O0

Smoothed i st Derivative 2nd Derivative

_._'_,_; DZ(t) DIE(t)

,20000000E O1 o25132720E 02 -,98695878E O1
,38531690E 01 e67956594E 01 -o30975557E 03

,29845913E 01 -,22179345E 02 -,,19362355E 03

o41222060E O0 -o22874442E 02 .17983632E 03

,400g O0 -.59309770E O0 .47785073E Ol .29731968E 03

.500E O0 .99999080E O0 .21991130E 02 .16654732E-02

.600E 00 .25930937E Ol .47787586E 01 -.29731867E 03

.700E O0 .15877988E O1 -.22874291E 02 -o17983906E 03

,800g 00 -,98457240E O0 -,22179509E 02 .19362082E 03

.900E O0 -.185BI747E Ol .67953974E Ol .50975660E 03

,IOOE Ol -,21200000E-04 ,25132712E 02 ,98729430E Ol

,flOE Ol ,1951048aE Ol ,87375126E Ol -,29098146E 03

,120E Ol ,136657_3g Ol -,18486037g 02 -,17765692E 03

,130E Ol -,76335620E O0 -,17791409E 02 ,19143604E 03

,140g Ol -,12111427g Ol ,I0753908E 02 ,30342050E 03

,150E Ol ,99996420E O0 ,28274310E 02 ,50716949E-02

,160E Ol ,32111154E Ol ,I0754677E 02 -,30341731E 03

,170E Ol ,27633813E Ol -,17790923E 02 -,19144412E 03

,180E Ol ,63347450E O0 -,18486488E 02 ,17764882E 03

,190E Ol ,48929400E-01 ,87367750E Ol ,29098460E 03

,200E Ol ,19999576E Ol ,25132736E 02 -,98628788E Ol

,210E Ol ,38531574E Ol ,67961828E Ol -,30975352E 03

,220E Ol ,29846287E Ol -,22179017E 02 -,19362901E 03

,230E Ol ,41225920E O0 -,22874747E 02 ,17983085E 03

,240E Ol -,59310580E O0 ,47780053E Ol ,29732171F 05
,250E Ol ,99995360E O0 ,21991130E 02 ,83225003E-02

,260g Ol ,25930856E Ol ,47792613E Ol -,29731664E OB

,270E Ol ,15878375E Ol -,22873987E 02 -,17984453E 05

,280E Ol -,98453500E O0 -,22179856E 02 ,19361536E 05

,290E Ol -,18531862E Ol ,67948740E Ol ,30975866E 03

,300E Ol -,63700000E-04 ,25132695E 02 ,98796524E Ol

,310E Ol ,19510357E Ol ,87380040E Ol -,29097937E 03

,320E Ol ,13666036E Ol -,18485737E 02 -,17766231E 03

,330E Ol -,76330610E O0 -,17791732E 02 ,19143065E 03

,340E Ol -,12111609E Ol ,I0753395E 02 ,303@2262E 03

,350E Ol ,99991640E O0 ,28274310E 02 ,I1833271E-01

,360E Ol ,32110973E Ol ,I0755190E 02 -,30341519E 03

,370E Ol ,27634114E Ol -,17790600E 02 -,19144950E OB

,380E Ol ,65350580E O0 -,18486788E 02 ,17764342E 03

,390E Ol ,48914700E-01 ,87362830E Ol ,29098669E 03
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Run _.20. Actual output s.

t

,O00E-50
,IOOE O0

,200E O0

,300E O0

Smoothed lStDerivative 2ndDerivative

SI S2 $3

,19966798E Ol o25230053E 02 -,88519600E Ol
,38609774E 01 ,68308277E Ol -,31145924E 03

o29858278E Oi -,22280317E 02 -,19386771E 03

o41012973E O0 -,22948935E 02 o18075636E 03

,#OOE O0 -,59110874E O0 ,_7872926E Ol ,29749969E 03
o500E O0 .99513290E O0 ,22075609E 02 ,10193050E 01

,600E O0 _25989650E Ol o48056716E Ol -o29902235E 03
,700E O0 .15868873E Ol -,22978105E 02 -,18008323E 03

,800E O0 -,98881099E O0 -,22251155E 02 ,19454088E 03
o900E O0 -o18531235E Ol ,68124424E Ol ,30993660E 03
,IOOE 01 -,64169700E-02 ,25230049E 02 ,10890582E 02
,IIOE Ol ,19559322E Ol ,87806289E Ol -,29268509E 03

o120E 01 ,13653205E 01 -,18571891E 02 -,17790110E 03

,130E 01 -.76723489E O0 =,17845091E 02 ,19235609E 03
,I40E 01 -.12101041E 01 ,10787154E 02 .30360045E 03

o150E 01 ,99510620E O0 ,28384502E 02 ,I0227100E 01
,160E Ol ,32179365E Ol ,I0806049E 02 -,30512093E 03
o170E 01 ,27642776E 01 -,17873931E 02 -o19168832E 03
,180E Ol °6317239#E O0 -.18543018E 02 ,17856888E 03

,190E 01 ,51905730E-01 ,87617643E 01 o29116458E 03

,200E Ol ,19966371E Ol ,25230066E 02 -,88452300E Ol

o210E Ol ,38609656E Ol ,68313535E Ol -,31145716E 03
,220E Ol ,29858655E Ol -,22279989E 02 -,19387323E 03

,230E Ol ,41016821E O0 -,22949241E 02 ,18075090E 03

,240E Ol -,59111675E O0 ,47867862E Ol ,29750169E 03

,250E Ol ,99509570E O0 ,22075606E 02 ,I0259830E Ol

o260E Ol ,25989569E Oi ,48061764E Oi -,29902032E 03

,270E OI ,1586926IE Ol -,22977801E 02 -,18008878E 03

,280E Ol -,98877416E O0 -,22251484E 02 ,19453546E 03
,290E Ol -,I8531351E Ol .68II9199E OI ,30993869E 03

,300E Ol -,64594000E-02 ,25230035E 02 ,I0897302E 02

,3IOE OI ,I9559174E Ol ,87811226E Oi -,29268303E 03

,320E Ol ,13653520E Ol -,18571596E 02 -,17790656E 03

,330E OI -,76720516E O0 -,178#5418E 02 ,I9235080E 03

,340E Ol -,12101223E Ol ,10786646E 02 ,30360260E 03
,B50E Ol ,99505880E O0 ,28384506E 02 ,10294110E 01
,360E 01 ,32179183E 01 ,10806554E 02 -,30511888E 03

,370E Ol ,2764BO73E Ol -,17873613E 02 -,19169365E 03

,380E 01 .63175457E O0 -,18543311E 02 ,17856364E 03
,390E 01 ,51891750E-01 ,87612840E 01 ,29116652E 03
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Run 4.3O.

f

,O00E-50
,IOOE O0
,200E O0
,300E O0
,400E O0
• 500E O0

o600E O0

oTOOE O0

0800E O0

,900E O0

,IOOE OI

• IIOE Oi

• I20E Oi

,I30E OI

,I_OE Oi

,150E Oi

,I60E OI

,170E Ol

, I75E Oi

• I80E Oi

• 185E Oi

, I90E Oi

• I95E Ol

• 200E OI

,2IOE OI

• 220E Ol

• 230E Oi

• 240E OI

• 250E Oi

•260E Oi

,265E Oi

,270E OI

•275E Oi

• 280E Ol

o285E Oi

,290E Oi

.300E O1

0310E 01
.320E O1
.330E O1

• 340E O1

• 350E Ol

• 360E Ol

,370E Oi

0380E 01
,390E 01
,400E O1

,#IOE Ol

,420E OI

o430E Ol

,4_OE O1
,450E O1
,460E 01
0470E Ol

,480E O1

6490E 01
• 500E Ol

Recovered transfer functions.

TFI

,IO000000E Ol

,99907998E O0

• 99931646E O0

,I0010677E Ol

.1000C_ol E n_

.99886238E O0

, I0006425E Oi

,I0007752E Oi

.99880356E O0

• 99998585E O0

.IOOI3162E Oi

.99909529E O0

.99915694E O0

• IOOI6514E OI

• 99977512E O0

,99814679F O0

,i0017739E '01

,i0010042E Ol

.99815180£ O0

.99640572£ O0

• 99803983E O0

• I0026755E Ol

.I0060471E Ol

,I0005279E Ol

•92967818£ O0

• 75327729E O0

.50035794E O0

,24648207E O0

•69765660E-01

.88390000E-04

-•53850800E-02

-•25282200E-02

,14668500E-02

•28774900E-02

• I5368000E-02

-•66490000E-03

-• I2712400E-02

011748000E-02

.17509000E-03

-•92392000E-03

,40365000E-03

,45518000E-03
-, 56294000E-03
-,29990000E-04

,44878000E-03
-,22763000E-03
-, 224.81 O00E-03

•29683000E-03
.18 IO0000E-04

-,23712000E-03

• 10BO4000E-03

• 13462000E-03

-, 13365000E-03

-•51090000E-04

• 11976000E-03

.97500000E-05

-o I0946000E-03

TF2

-.O0000000E-50
• I0019297E O0
.19971041E O0

.30012350E O0
,4003i356E O0
.49948591E O0

,60006845E O0

.70066934E O0

.79929887E O0

,89969049E O0

.lO012110E Ol

.I0993790E Ol

•i1988663E

.13018188E

,14000287E

,14973674E

• 16023815E Ol

,17018492E Ol

.17471953E Ol

.17939404E Ol

,18463800E Ol

,19046610E Ol

,19612778E Ol

,20008798E Ol

,19528897E Ol

• 16570165E Ol

,i1503241E Ol

,59209553E O0

• 17459921E O0

-,47688527E-03

-,14656341E-01

-,65433446E-02

,47777932E-02

.86491178E-02

,#309_425E-02

-,26293922E-02

-.39808054E-02

,45218398E-02

•13739491E-03

-.37339274E-02

.22937934E-02

•17028016£-02

-.31189940E-02

,52071151E-03

•24772608E-02

-,21068544E-02

-,89525265E-03

,25695913E-02

-086277327E-03

-,18644426E-02

,20775300E-02

,40070746E-03

-,22914146E-02

,I1534379E-02

.14658183E-02

-•21411032E-02

-•18661849E-06

TF3
-,58318545E-02

-,80659397E-02
-,35478026E-01

-,95055768E-01

-eI6119351E O0

-,24395872E O0

-•36286209E O0

-,49#31150E O0

-,63393498E O0

-,80956836E O0
-•I0068540E Ol

-,12056404E Ol

Ol -.14354893E Ol

Ol -,16982835£ Ol

Ol -,19592377E Ol

Ol -,22406451E Ol

-.25683347E Ol

-,28955224E Ol

-.30542592E Ol

-.32228329E Ol

-.34119223E Ol

-,36206707E Ol

-,3830a844E Ol

-•40068302E Ol

-.40957027E Ol

-.36439244[ Ol

-•26522678£ Ol

-•14181305£ Ol

-.43186968E O0

-,49678366E-02

•32960773E-01

•17141369E-01

-•77990086E-02

-•17510939E-01

-•99314431E-02

•35498696E-02

,78814335E-02

-•69657671E-02

-•I0527795E-02

•55163144E-02

-•24288248E-02

-,26208541E-02

,33184010E-02

,27863372E-04

-,26030469E-02

,13943591E-02

,11685898E-02
-,17309233E-02

,52383140E-04

,13160377E-02
-,64149082E-03
-,60460985E-03

,76680001E-03
,16333002E-03

-,59599753E-03

-,33967984E-04

,44758708[-03
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Theinput anddesiredoutput for Run4.30 are the sameas for Run
3.20. Thenumberof weightswasincreased. Notethe improvedaccuracy
in the transfer function andthe actual outputs.

Run 4.30. Actual outputs.

Smoothed ls-_-tDerivative 2ndDeriv_ative

t S1 S2 83
.O00E-50 .19985248E Ol .25143768E 02 -.97921200£ Ol
,IOOE O0 ,38533630E Ol ,68050311E Ol -,31032783E 03

,200E O0 ,29841874E O1 -,22194413E 02 -,19395645E 03

,300E O0 ,41082716E O0 -,22872747E 02 ,18008466E 03

,400E O0 -.59418055E O0 .47800346E Ol .29762004E 03

.500E O0 ,99965360E O0 ,22005412E 02 -,15936600E O0

.600E O0 .25947223E Ol .47902065E Ol -.29819147E 03

,700E O0 ,15889840E Ol -.22888646E 02 -,18050508E 03

,800E O0 -,98437667E O0 -,22178530E 02 ,19353604E 03

,900E O0 -,18528241E Ol ,67948506E Ol ,30975645E 03

,IOOE Ol ,77930000E-03 ,25143765E 02 ,94734070E Ol

,llOE Ol ,19534076E Ol ,8744889@E Ol -,29200738E 03

,120E Ol ,13680091E Ol -,18504907E 02 -.17837570£ 03

,130E Ol -,76339220E O0 -,17794939E 02 ,19140399£ 03

,140E Ol -,12115225E Ol ,i0749293E 02 ,30357342E 03

,150E Ol ,99962710£ O0 ,28282128E 02 -.15596600£ O0

,160E Ol ,32120402E Ol ,i0759978E 02 -,30414267E 03

,170£ Ol ,27632290E Ol -,17810504E 02 -,19182978E 03

,180E Ol ,63182935E O0 -,18489304E 02 ,17794993E 03

,190E Ol ,47116300E-01 ,87342318E Ol ,29143807E 03

,200E Ol ,19984823E Ol ,25145779E C2 -,97853900E Ol

,210E Ol ,38535517E Ol ,68055583E Ol -,31032575E 03

,220E Ol ,29842250E Ol -,22194087E 02 -,19396191E 03

,230E Ol ,41086573E O0 -,22873052E 02 ,18007914E 03

,240E Ol -,59418865E O0 ,47795285E Ol ,29762208E 03

,250E Ol ,99961640E 00 ,22005411E 02 -,15269400E O0

,260E Ol ,25947143£ Ol ,47907116E Ol -,29818948£ 03

.270E Ol ,15890228E Ol -,22888340E 02 -,18051059E 03

,280E Ol -,98433947E O0 -.22178857E 02 ,19353060E 03

,290E Ol -,18528357E Ol .67943305E Ol ,30975857E 03

,300E Ol ,73690000£-03 ,25143751E 02 ,94801200E Ol
,310E Ol ,19533929£ Ol ,87453821E Ol -,29200533E 03

,320E Ol ,13680404E Ol -,18504611E 02 -,17838113E 03

,330E Ol -,76336249£ O0 -.17795265E 02 ,19139871E 03

,340E Ol -.12115406E Ol .I0748786E 02 ,30357559E 03

,350E Ol ,99957970£ O0 ,28282133E 02 -,14927200E O0

,360E Ol ,32120224E Ol ,I0760484E 02 -.30414064E 03

.370E Ol ,27632586E Ol -,17810186E 02 -,19183507E 03

,38GE Ol ,63186026E 00"-,18489595E 02 ,17794463E 03

,390E Ol .47102350E-0i ,87337504E Ol ,29144001E 03
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7.4 Program and example for indefinite intesration.

The following program was run with the input _given by (7.7) with

A1 = 1.5, A2 = 2.0, A_ = 1.5, A. = O, fl = O_7, f2 = 0.9, f3 = 2.0, and

f = 10.O. N = XN1 = 25. Also, 25 terms were used in computing the
s

sine integral--which is too many terms for small values of the argument.

For large values of the argument, the first terms of the series may

become large enough to cause loss of significance, and computation of

the slneintegral should be approached with caution.

The other parameters chosen were fc = l, _f = .6, _f the inner

and outer roll-off length. In terms of the frequency ratio, the input

frequencies are .07, .09, and .2, and rc = .1, rd = .06, rT = .16.

The notation chosen in the program is analogous to that of

section 7.3. The results follow the program. In this case the

weights are given along with the transfer function recovery, the

desired output, and the actual output.
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C C INDEFINITE INTEGRATION WITH SMOOTHING

DIMENSION TERMI(50),TERM2(50),A(BO),B(30)

DIMENSION C(30),H(30),Z(IO1),ZI(40)

P = 3.14159

READ I, XMI, XNI, TC, TD

I FORMAT (FIO.O,FIO.O_FIO.O,FIO.O)

READ 2, Tlt T2, T3. FS

2 FORMAT (FIO.O_FIO°OpFIO.OtFIO.O)

READ 3_ Alt A2, A3

3 FORMAT (FIO.O,FIO°O,FIO.O)

READ 4_ Bip B2_ B3
4 FORMAT (FlO.OtFlO.OoFlOeO)

M1 = XM1

N1 = XN1

RT = TC + TD

C C SINE INTEGRAL

TERM1(1)=1.

TERM2(1)=1.

DO 8 I = I, NI
X=I

Xl : 2,*X*P*TC
X2 = 2,*X'P'TO

DO 5 K=I,MI
Y : K
J=K+I
TERMI(J)=-XI*Xl*TERMI(K)*(2,*Y-I,)/((2°*Y+I,)*(2.*Y+lo)*2,*Y)

5 TERM2(J)=-X2*X2*TERM2(K)*(2,*Y-1,)/((2e*Y+le)*(2°*Y+I,)*2e*Y)

$1 = 0
$2 = 0

DO 6 J = i, M1
SI=SI+TERMI(J)

6 S2=S2+TERM2(J)
C C WEIGHTS

A(1)=2.*P*TD*(X2*S2-XI*SI)

B(I) : (COSF(2.*P*X*TD)/X) - SINF(2°*P*X*TD)/(2.*P*TD*X*X)

C(1) = (SINF(2.*P*X*RT) - SINF(2.*P*X*TC)I/(2.*P*TC*X*X)

H(1)=A(I}+B(1)+C(I)-TD*COSF(2,*P*X*TC)/(TC*X)

PUNCH 7, X, HI1)

7 FORMAT (F7°3, E20°8)
8 CONTINUE

C C TRANSFER FUNCTION RECOVERY

DO ii K = i, 51

HI = 0

Y = K-I

Y = Y * °01
DO 9 I = 1, N1
X = I

9 H1 = H1 + 2,*H(1)*SINF(2,*X*P*Y)
H1 : HI/(2,*P*P*TD*FS)

YI=Y*FS
PUNCH lOpY1,H1

10 FORMAT [F7°3_ E20,8)
11 CONTINUE

C C INPUT DATA

M3=NI+I

M = 2"N1+40
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P2 = P*P
DO 14 I = i, M

T = I-M3

CI = COSF(2._P*TI*T}

S = SINF(2._P*T2*T)

C3=COSF(2._PwT3*T}

14 Z(1)=AI*CI+A2*S+A3*C3

C DESIRED OUTPUT

DO 16 I = 1, 40

T=I-1

C1 = SINF(2.*P*TI*T)

S = COSF(2,_P_T2*T)

C3=SINF(2._PWT3_T)

ZI(1)=(1./(2._P_FS})_((BI_C1/T1)-(B2_S/T2)+(B3wC3/T3))

Y=T/FS

PUNCH 159Y,ZI(1)

15 FORMAT {F7.3, E20o8)

16 CONTINUE

C ACTUAL OUTPUT

DO 19 K = 19 40

M4 = K-1

M5 = N1+1

$1 = 0

T = M4

T = T/FS

DO 17 I = 19 N1

K1 = MS-I

K2 = I + M4

K3 = MS+M4+I

17 $1 = $1 - H(K1}_Z(K2)+H(1)WZ(K3)

Si = S1/(2°_P2WTD_FS)
PUNCH 189 T,. $I

18 FORMAT (F7.3, E20.8)

19 CONTINUE

STOP

END
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Inaefinite Inte6ration with smoothing.

n

1.000

2.000

3.000

4,000

5.000

6.000

7.000

8.000

9.000

I0.000

II.000

12.000

13.000

14,000

15.000

16.000

17.000

18.000

19.000

20.000

21.000

22.000

23.000

24.000

25.000

Weights

-,21454526E-00

-.35924655E-00

-.39618853E-00

-,33380622E-00

-.21699964£-00

-,I0052025E-00

-,22045076E-01

.10480938E-01
,13045094E-01

.85941740E-02

,i1353359E-01

.21432966E-01

.30236526£-01

,30126059E-01

.20557104E-01

.73245800E-02

-,28660550E-02

-,72928270E-02

-.78980180E-02

-.81692720E-02

-.99475460£-02

-,11789276£-01

-.11421037E-01

-,62803660E-02

-,95407800E-03

f

,000

,I00

.200

,300

,400

.500

,600

.700

,800

.900

1.000

i,i00

1,200

1.300

1.400

1,500

1.600

1,700

1,800

1.900

2.000

2,100

2.200

2.300

2,400

2,500

2.600

2.700

2,800

2.900

3.000

3.100

3.200
3.300

3.400

3.500

3.600

3,700

3.800

3.900

4.000

4,100

4.200

4.300

4.400

4.500

4.600

4.700

4.800

4.900

5.000

Weights and Transfer function.

Transfer function

,00000000E-99

-,48316595E-01

-,87799236£-01

-,12781742E-00

-,17900819E-00

-.22789864E-00

-.24757827E-00

-.23157831E-00

-,20080206E-00

-.17572434E-00

-.15644913E-00

-.13391492E-00

-,I0680382E-00

-,79328906E-01

-.52227487E-01

-.25658076E-01

-,54776971E-02

,22907104E-02

.69471017E-03

-,14145407E-02

-,27708135E-03

.99977962E-03

.16964473E-03

-,76567173E-03

-,13772748E-03

,60982346E-03

,13198459E-03

-,49169692E-03

-,13306796E-03

,39533037E-03

,13152694E-03

-,31636442E-03

-.12515112E-03

.25396192E-03

,I1672168E-03

-.20549376E-03

-,I0984179E-03

.16551916E-03

.I0457756E-03

-,12943515E-03

-,98196927E-04

.95910881E-04

.88133242E-04

-.65782975E-04

-.73275802E-04

.40405606E-04

.53352386E-04

-,21199889E-04

-,28416106Ev04
,I0545189E-04

,13537622E-08
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|

Indefinite

output.

t

.000

.i00

.200
,300

,400

.500

.600

.700

.800

.900

1.000

I.i00

1.200
1.300

1.400

1.500

1.600

1.700

1,800

1.900

2.000

2.100

2,200
2.300

2.400

2,500

2,600

2,700

2,800
2.900
3,000

3,100

3.200

3.300

3,400

3,500

3,600

3.700

3.800

3.900

inte6Tation and smoothing.

Desired output t

-.35367793E-00 .000

-, 15340979E-00 .I00

,I 1219169E-00 .200

.37465896E-00 .300

,56044806E-00 ,400

,61228028E-00 .500

, 50686785E-00 ,600

,26352543E-00 .700

-.59272709£-01 ,800

-,37880758E-00 ,900

-,6 I048465E-00 1.000

-,69133740E-00 i.i00

-,59788727£-00 1.200

-,35313085E-00 1.300

-.20540975E-01 1.400

.31327197E-00 ].500

.56230159E-00 1,600

,66451015E-00 1.700

,59819582E-00 1,800

.38682170E-00 1,900

,91174926E-01 2.000

-,20860285E-00 2,100

-,43570072E-00 2,200

-,53740801E-00 2.300

-,49810027E-00 2.400

-,34105079E-00 2,500

-, I1908317E-00 2.600

, I0262141£-00 2.700

.26607147E-00 2,800

,33641861E-00 2.900

,30975657E-00 3,000

%21090859£-00 3.100

,82557013£-01 3.200

-,30313693£-01 3.300

-,95377830E-01 3,400

-, I0249805E-00 3,500

-,64953839E-01 3.600

-,12357850E-01 3,700

,21974700£-01 3.800

•14623757E-01 3.900

Desired output and actual

Act_,___!o_,_put
-.35144868E-00

-.14844095E-00

.11825555£-00

,38025760E-00

,56484080E-00

,61527389E-00

e50814904£-00

,26264061E-00

-,62261615£-01

-,38298996£-00

-.61469266E-00

-,69498835£-00

-,60102638E-00

-,35568815E-00

-,21868438E-01

.31391495E-00

,56495094E-00

.66844175E-00

.60263503E-00

.39141123E-00

.95579163E-01

-.20530551E-00

-,43481667E-00

-.53966433E-00

-,50302054E-00

-,34737171E-00

-.12560173E-00

,96819607E-01

.26204345E-00

.33549022E-00

,31278276E-00

,21739711E-00

,90734710E-01

-,22_91099E-01

-.89375466E-01

-,99234314E-01

-.65210438E-01

-,16574201E-01

.14440005E-01

.57324858£-02
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APPENDIXA

CONSTRAINTS

In order to develop constraints on the weights _ such that

the recovered transfer function H has an exact fit at some specified

frequency _ we need to consider two separate cases. The first is

when H is of the form H(r) = h
O

N

+ 2>h cos 2_nr, r = f =
n fs 2_f

n=l s

N

sin 2_nr.The second is when H(r) is of the form H(r) = 2i hn

n=l

A.1

then

Constraints at one point

N

Case I. Suppose H(r) = % + 2Z%cos 2_nr,

n=l

N

H'(r) = -4_) _sin 2_nr.
&__j--

n=l

We wish to impose the following constraints:

H(7)=

i.e.,

=

N

h° + 2 cos 2_n_ - F(_) = 0,

n=l

z23



N

n=l

+ F,(_)--o.

In order to minimize the error between H and H _mder the above con-

straints we define

1
N

R = f [H(r)- H(r)]2dr + (_[4_nSin 2_n_+ F'(_)].

0 n=l

Since

N

= F(_)- 2> _nCOS2_n_,h o
n=l

1

2 N

R = [F(_) + 2 ) (cos 2_nr - cos 2_n_)

0 n=l

-h
O

N
V:

- 2 _ hnCOS 2_nr]2dr

n=l

N

+ G[4_ _ n]_nSin 2_n_ + F' (7) ].

n=l

a---!-R- 2 f-
a_ o

1

2 N

n=l

N
r-----n

2_nr - cos 2_n_) - h O - 2 _'hnCOS 2_nr]

n=l

[cos 2_kr - cos 2_k_]dr + a[4_ksin 2_k_].

Let aR = 0, k = i, • . .,N.

1 F(I")cos 2_k_ + -_ + cos 2_n_' cos 2_k_' + --_cos 2_ld" - --2
n=l

= - a[_ksin 2_k_]
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Let

N

,.E  oos
n=l

S = (%-ho), then

h
o

+ -_cos 2_k? = - G[_ksin 2_k?].

(_-h) = _ oos2_k?- _[_ksin2_3. (A.I)

Multiply (A.I) by (2 cos 2_kY). Summing from i to N gives

N

2 _ (%-_)cos 2_k_

k=l

=2

N N

_cos2 2_k_- _,_kcos 2_k_ sin 2_k_,

k=l k=l

adding (%-h o) to both sides gives

N

k=l

Let

N

= $ + 2 $_cos 2

=h O

k=l

N

2_k? - _ > _kcos 2_k_ sin 2_k_.

k=l

N

+ 2_h cos 2_n_ - F(_).
/uJ n

n=l

Hence

N

= (_o_o_+_> (_n_n_O,_n_,
n=l

sO

A

N

= _ _ _ncos 2_n_ sin 2_n_

n=l

N

- 2 8_ cos 2 2_n_.
n=l

_25



Now multiply (A.I) by 2ksin 2_k_. Summing from i to N gives

N N N

2 k(%-h_)sin 2_k_ = 2 _ kcos 2.k_ sin 2_k_ - i'x_2 sin 2_r.

_--_L'"I k=l k=l

Let

Hence

So

N

= -4_ _ nhnsin 2_nY - F' (r).

n=l

N
v-'-1

= 4_ >n(%-hn)sin 2_n_.
A_..] _

n=l

N N

_2 = 4_ _]kcos 2_k_ sin 2_klT- 8_2_k2sin22_k_.

k=l k=l

Let Q1

N

7 2= 2 cos 2_k_,

k=l

N

Q2 = 4_ Z kcos 2_k_ sin 2_k_,

k=l

N

Q3 " 8_2_ k2sin22_k_"

k=l

Then

and

i26



Solving we find that

Therefore the constrained weights are

h =h + _ ,
o o

% = h k + _ cos 2_k_ - C_ksin 2_k_,

where _ and G are as defined in (A.2) and (A. 3).

N

Case II. Suppose H(r) = 2i sin 2%nr,

n=l

then

N

n=l

We wish to impose the follc_ing constraints

k>_l,

(A.2)

(A.3)

i.e.

and

H(_) • F(_),

H'(_) = F'(_),

N

_- F(T)2 h nsin 2_n_ - .--:---l= 0,

n=l

N

y F' =4_ n_ cos 2_n_ (_[ o.
t___ n i
n=l
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In order to minimize the error between H and H under the above

conditions we define

1

2 N

R = [H(r) - H(r)] dr + a[k_ cos 2_n_ i
0 n=l

Since

N

n=2

2sin 2_

1

N N

R =f[ sin 2_r [__ 2_h sin 2_n_] + 2_h sin 2_nr
sin 2_ n n

0 n=2 n=2

1

N N

- 2 h sin 2_nr] dr + _[4_ cos 2_n_ - ]
n L__I

n=l n=l

2 N N

8...___R [sin 2_r[ - 2 sin 2_n_] + 2 hsln 2_nr2
a n

h o n=2 n:2

N

-2_hnSin 2_nr][ -2sin 2_r sin_2_k_

n=l sin 2xr

-+ 2sin 2_kr]dr + 4a_Xkcos 2_k_.

Let aR = 0, k = 2, . . .,N.

Now

1
i

2 N

fsin 2_r [Fi__ . 27_ sin 2_n_][sin 2_kr -
sin 2_ n

0 n=2

sin 2_r sin 2_kr]d r

sin 2_

m sin 2_k_
sin2 2_

N

+ 2sin 2_k_ _, %sin 2_n_
sin22_Y n=2
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1

Also /

0

N

[%-hn]sin 2_nr[sin 2_tkr

n=2
sin 2_

1

[hlSin2 hl2_r] sin 2_k_dr- =--E
sin 2_r

0

sin 2,_k_

sin 2_r

Hence

N

hl sin 2xk_1 . 1 C_-_] +[2 h sin 2_n_ _] sin 2_k_+ _ -%
n=2 n i sin2 2_ sin 2_

= -_kcos 2_k?

(hl__ l) sin 2_k + (%._) = . (_kcos 2_k_.
sin 2_

Let _ = hl-hl, then

<-h,_ = _ sin 2_k a_tkcos 2_k_. (A.4)

sin 2_r

Multiplying (A.4) by 2sin 2_k_ and summing from 2 to N gives

N N N

2 ( -hk)sin 2_k_ = 8 2 sin2
k=2 sin 2_ .0_k=2k cos 2_k_ sin 2_k_.

Adding 2(h-l-hi) sin 2=_ to both sides yields

N N N

2(_-_)sin _,_. = _ , . .-----
k=l k_=l sin 2_ k=2

Let

N

k=l

2_k_ - F(_).
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S ince
N

F(_) = 2 Z%sin 2_k_,

k=l

or

%

N

k=l

N N

2_k_
2_ = 2_ kcos 2xk? sin 2_k_ - 2
A.

sin 2_r
k=2 k=l

Multiplying (A.4) by 4_kcos 2_k_ and summing from 2 to N gives

N N N

sin 2_ .....
k=l k=l k=2

adding 4_(hl-hl)COS 2_? to both sides of the above equation gives

N N N

4_(%-_)kcos 2_k_ = _ _Zkco' 2_k_ sin 2_k_ .__ 22cOs

k=l k=l sin 2_ k=2

2_k_.

Let

N

½ : 4_Z m%cos2_k_- ;,(_).
k=l

Since F' (_)

N
@

k=l

Hence

%

%

N

k=l

N N

= _ _kcos 2_k_ sin2_k__ - 4G_2Zk2cos2
sin 2_r

k=l k=2

2_k_.

_3o



Let

N

QI = 2_,_in22_k_
sin 2_

k=l

N

Q2 = 2Zkc°s 2_k_ sin 2_k_,

k=l

Q3 = sin 2_

N

Q4 = 4_2 _. k2c°s2 2_k_.

k=l

Then

and

2
A2 = -(Z(Q4-4_ 2 cos 2_) + _Q3.

Solving for 8 and _ we find that

_

2 h_(W2-cos 2_ sin 2_)

%(Q2-oo_2._sin2,_) %(%-4.2 °0.2 2,_)
(A.5)

Q3 (%-cos 2_ sin 2_) -%(%-4_2cos 2 2_))

Therefore the constrained weights are

hl = hI +_

• (A.6)

sin 2_k%=& ÷_
sin 2_r

_k cos 2_k_, k > 2.
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APPENDIX B

ROMBERG'S METHOD OF NUMERICAL INTEGRATION

b

Suppose we wish to calculate J = Jg(x)dx.

a

2k_l

2To,k = 2-k[ g g(a) ÷
n=l

First we define

b-a n) + i g(b)]
g(a+ V _ '

which are the results of applying the trapezoidal rule with a

partitioning of the interval [a,b] into 2k parts. With these values

we form

T = 4mTm-l_ k+l -Tm-l_k

m,k 4ml '

m=l,2, ..., k=O, 1,2, ..., and arrange them in the triangular table

T
o,o

To,I TI,o

To,2 TI,I

To,3 TI,2

T2,o

T2,1 T3,o

Then J" (b-a) Tm, O. See [13].

If the interval [a,b] is divided into 2k subintervals, each of

length h, it has been shown that J - (b-a)%_ O = O(h 2k+2).

We note that, assuming that a sufficiently large number of

functional values are available in the interval, a very close

approximation of the integral can be obtained.

132 NASA-Langley, 1964 CR-136


